------------------------------------------------------------------------
-- Algorithmic equality.
------------------------------------------------------------------------

open import Definition.Typed.Restrictions

module Definition.Conversion
  {a} {M : Set a}
  (R : Type-restrictions M)
  where

open Type-restrictions R

open import Definition.Untyped M hiding (_∷_)
open import Definition.Typed R

open import Tools.Fin
open import Tools.Nat
open import Tools.Product
open import Tools.PropositionalEquality


infix 10 _⊢_~_↑_
infix 10 _⊢_~_↓_
infix 10 _⊢_[conv↑]_
infix 10 _⊢_[conv↓]_
infix 10 _⊢_[conv↑]_∷_
infix 10 _⊢_[conv↓]_∷_

private
  variable
    n : Nat
    Γ : Con Term n
    C F H G E : Term n
    a₀ b₀ g h k l t u v : Term n
    x y : Fin n
    p p′ p″ p₁ p₂ q q′ q″ r r′ : M
    b : BinderMode

mutual
  -- Neutral equality.
  data _⊢_~_↑_ (Γ : Con Term n) : (k l A : Term n)  Set a where

    var-refl      : Γ  var x  C
                   x  y
                   Γ  var x ~ var y  C

    app-cong      : Γ  k ~ l  Π p , q  F  G
                   Γ  t [conv↑] v  F
                   Γ  k ∘⟨ p  t ~ l ∘⟨ p  v  G [ t ]₀

    fst-cong      : Γ  k ~ l  Σₚ p , q  F  G
                   Γ  fst p k ~ fst p l  F

    snd-cong      : Γ  k ~ l  Σₚ p , q  F  G
                   Γ  snd p k ~ snd p l  G [ fst p k ]₀

    natrec-cong   : Γ    F [conv↑] G
                   Γ  a₀ [conv↑] b₀  F [ zero ]₀
                   Γ    F  h [conv↑] g  F [ suc (var x1) ]↑²
                   Γ  k ~ l  
                   Γ  natrec p q r F a₀ h k ~ natrec p q r G b₀ g l  F [ k ]₀

    prodrec-cong  : Γ  (Σᵣ p , q  F  G)  C [conv↑] E
                   Γ  g ~ h  Σᵣ p , q  F  G
                   Γ  F  G  u [conv↑] v  C [ prodᵣ p (var x1) (var x0) ]↑²
                   Γ  prodrec r p q′ C g u ~ prodrec r p q′ E h v  C [ g ]₀

    emptyrec-cong : Γ  F [conv↑] H
                   Γ  k ~ l  Empty
                   Γ  emptyrec p F k ~ emptyrec p H l  F

  -- Neutral equality with types in WHNF.
  record _⊢_~_↓_ (Γ : Con Term n) (k l B : Term n) : Set a where
    inductive
    constructor [~]
    field
      A     : Term n
      D     : Γ  A ⇒* B
      whnfB : Whnf B
      k~l   : Γ  k ~ l  A

  -- Type equality.
  record _⊢_[conv↑]_ (Γ : Con Term n) (A B : Term n) : Set a where
    inductive
    constructor [↑]
    field
      A′ B′  : Term n
      D      : Γ  A ⇒* A′
      D′     : Γ  B ⇒* B′
      whnfA′ : Whnf A′
      whnfB′ : Whnf B′
      A′<>B′ : Γ  A′ [conv↓] B′

  -- Type equality with types in WHNF.
  data _⊢_[conv↓]_ (Γ : Con Term n) : (A B : Term n)  Set a where

    U-refl     :  Γ  Γ  U [conv↓] U

    ℕ-refl     :  Γ  Γ   [conv↓] 

    Empty-refl :  Γ  Γ  Empty [conv↓] Empty

    Unit-refl  :  Γ  Unit-allowed  Γ  Unit [conv↓] Unit

    ne         :  {K L}
                Γ  K ~ L  U
                Γ  K [conv↓] L

    ΠΣ-cong    :  {F G H E}
                Γ  F
                Γ  F [conv↑] H
                Γ  F  G [conv↑] E
                ΠΣ-allowed b p q
                Γ  ΠΣ⟨ b  p , q  F  G [conv↓] ΠΣ⟨ b  p , q  H  E

  -- Term equality.
  record _⊢_[conv↑]_∷_ (Γ : Con Term n) (t u A : Term n) : Set a where
    inductive
    constructor [↑]ₜ
    field
      B t′ u′ : Term n
      D       : Γ  A ⇒* B
      d       : Γ  t ⇒* t′  B
      d′      : Γ  u ⇒* u′  B
      whnfB   : Whnf B
      whnft′  : Whnf t′
      whnfu′  : Whnf u′
      t<>u    : Γ  t′ [conv↓] u′  B

  -- Term equality with types and terms in WHNF.
  data _⊢_[conv↓]_∷_ (Γ : Con Term n) : (t u A : Term n)  Set a where

    ℕ-ins     : Γ  k ~ l  
               Γ  k [conv↓] l  

    Empty-ins : Γ  k ~ l  Empty
               Γ  k [conv↓] l  Empty

    Unit-ins  : Γ  k ~ l  Unit
               Γ  k [conv↓] l  Unit

    Σᵣ-ins    : Γ  k  Σᵣ p , q  F  G
               Γ  l  Σᵣ p , q  F  G
               Γ  k ~ l  Σᵣ p′ , q′  H  E
               Γ  k [conv↓] l  Σᵣ p , q  F  G

    ne-ins    :  {k l M N}
               Γ  k  N
               Γ  l  N
               Neutral N
               Γ  k ~ l  M
               Γ  k [conv↓] l  N

    univ      :  {A B}
               Γ  A  U
               Γ  B  U
               Γ  A [conv↓] B
               Γ  A [conv↓] B  U

    zero-refl :  Γ  Γ  zero [conv↓] zero  

    suc-cong  :  {m n}
               Γ  m [conv↑] n  
               Γ  suc m [conv↓] suc n  

    prod-cong :  {F G t t′ u u′}
               Γ  F
               Γ  F  G
               Γ  t [conv↑] t′  F
               Γ  u [conv↑] u′  G [ t ]₀
               Σᵣ-allowed p q
               Γ  prodᵣ p t u [conv↓] prodᵣ p t′ u′  Σᵣ p , q  F  G

    η-eq      :  {f g F G}
               Γ  f  Π p , q  F  G
               Γ  g  Π p , q  F  G
               Function f
               Function g
               Γ  F  wk1 f ∘⟨ p  var x0 [conv↑] wk1 g ∘⟨ p  var x0  G
               Γ  f [conv↓] g  Π p , q  F  G

    Σ-η       : Γ  k  Σₚ p , q  F  G
               Γ  l  Σₚ p , q  F  G
               Product k
               Product l
               Γ  fst p k [conv↑] fst p l  F
               Γ  snd p k [conv↑] snd p l  G [ fst p k ]₀
               Γ  k [conv↓] l  Σₚ p , q  F  G

    η-unit    :  {k l}
               Γ  k  Unit
               Γ  l  Unit
               Whnf k
               Whnf l
               Γ  k [conv↓] l  Unit

star-refl :  Γ  Unit-allowed  Γ  star [conv↓] star  Unit
star-refl ⊢Γ ok = η-unit (starⱼ ⊢Γ ok) (starⱼ ⊢Γ ok) starₙ starₙ

-- An inversion lemma for prod-cong.

prod-cong⁻¹ :
   {t′ u′} 
  Γ  prodᵣ p t u [conv↓] prodᵣ p′ t′ u′  Σᵣ p″ , q  F  G 
  p  p′ ×
  p  p″ ×
  Γ  F ×
  Γ  F  G ×
  (Γ  t [conv↑] t′  F) ×
  (Γ  u [conv↑] u′  G [ t ]₀) ×
  Σᵣ-allowed p q
prod-cong⁻¹ (prod-cong F G t u ok) = refl , refl , F , G , t , u , ok