open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
module Definition.LogicalRelation.Substitution.Reflexivity
  {a} {M : Set a}
  (R : Type-restrictions M)
  {{eqrel : EqRelSet R}}
  where
open EqRelSet {{...}}
open import Definition.LogicalRelation.Properties R
open import Definition.LogicalRelation.Substitution R
open import Definition.Untyped M using (Con ; Term)
open import Tools.Nat
open import Tools.Product
private
  variable
    n : Nat
    Γ : Con Term n
reflᵛ : ∀ {A l}
        ([Γ] : ⊩ᵛ Γ)
        ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
      → Γ ⊩ᵛ⟨ l ⟩ A ≡ A / [Γ] / [A]
reflᵛ [Γ] [A] ⊢Δ [σ] =
  reflEq (proj₁ (unwrap [A] ⊢Δ [σ]))
reflᵗᵛ : ∀ {A t l}
         ([Γ] : ⊩ᵛ Γ)
         ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
         ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A])
       → Γ ⊩ᵛ⟨ l ⟩ t ≡ t ∷ A / [Γ] / [A]
reflᵗᵛ [Γ] [A] [t] ⊢Δ [σ] =
  reflEqTerm (proj₁ (unwrap [A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))