------------------------------------------------------------------------
-- Inequality lemmata.
------------------------------------------------------------------------

open import Definition.Typed.Restrictions

module Definition.Typed.Consequences.Inequality
  {a} {M : Set a}
  (R : Type-restrictions M)
  where

open import Definition.Untyped M as U
  hiding (U≢ne; ℕ≢ne; B≢ne; ΠΣ≢ne; U≢B; ℕ≢B; zero≢ne; suc≢ne; _∷_)
open import Definition.Typed R
open import Definition.Typed.EqRelInstance R
open import Definition.Typed.Properties R
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Irrelevance R
open import Definition.LogicalRelation.ShapeView R
open import Definition.LogicalRelation.Fundamental.Reducibility R
open import Definition.Typed.Consequences.Syntactic R

open import Tools.Function
open import Tools.Nat
open import Tools.Nullary
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE

private
  variable
    n : Nat
    Γ : Con Term n
    A B C F G K t u v : Term n
    p p′ q q′ : M
    b : BinderMode
    l : TypeLevel

A≢B :  {A B Γ} (_⊩′⟨_⟩A_ _⊩′⟨_⟩B_ : Con Term n  TypeLevel  Term n  Set a)
      (A-intr :  {l}  Γ ⊩′⟨ l ⟩A A  Γ ⊩⟨ l  A)
      (B-intr :  {l}  Γ ⊩′⟨ l ⟩B B  Γ ⊩⟨ l  B)
      (A-elim :  {l}  Γ ⊩⟨ l  A   λ l′  Γ ⊩′⟨ l′ ⟩A A)
      (B-elim :  {l}  Γ ⊩⟨ l  B   λ l′  Γ ⊩′⟨ l′ ⟩B B)
      (A≢B′ :  {l l′} ([A] : Γ ⊩′⟨ l ⟩A A) ([B] : Γ ⊩′⟨ l′ ⟩B B)
             ShapeView Γ l l′ A B (A-intr [A]) (B-intr [B])  )
     Γ  A  B  
A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B with reducibleEq A≡B
A≢B {A} {B} _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B | [A] , [B] , [A≡B] =
  let _ , [A]′ = A-elim ([A])
      _ , [B]′ = B-elim ([B])
      [A≡B]′ = irrelevanceEq [A] (A-intr [A]′) [A≡B]
  in  A≢B′ [A]′ [B]′ (goodCases (A-intr [A]′) (B-intr [B]′) [A≡B]′)

U≢ℕ′ :  {B l l′}
       ([U] : Γ ⊩′⟨ l ⟩U)
       ([ℕ] : Γ ⊩ℕ B)
      ShapeView Γ l l′ _ _ (Uᵣ [U]) (ℕᵣ [ℕ])  
U≢ℕ′ a b ()

U≢ℕ-red :  {B}  Γ  B ⇒*   Γ  U  B  
U≢ℕ-red D = A≢B  Γ l A  Γ ⊩′⟨ l ⟩U)  Γ l B  Γ ⊩ℕ B) Uᵣ ℕᵣ
                 x  extractMaybeEmb (U-elim x))
                 x  extractMaybeEmb (ℕ-elim′ D x))
                U≢ℕ′

-- U and ℕ cannot be judgmentally equal.
U≢ℕ : Γ  U    
U≢ℕ U≡ℕ =
  let _ , ⊢ℕ = syntacticEq U≡ℕ
  in  U≢ℕ-red (id ⊢ℕ) U≡ℕ

-- U and Empty
U≢Empty′ :  {B l l′}
       ([U] : Γ ⊩′⟨ l ⟩U)
       ([Empty] : Γ ⊩Empty B)
      ShapeView Γ l l′ _ _ (Uᵣ [U]) (Emptyᵣ [Empty])  
U≢Empty′ a b ()

U≢Empty-red :  {B}  Γ  B ⇒* Empty  Γ  U  B  
U≢Empty-red D = A≢B  Γ l A  Γ ⊩′⟨ l ⟩U)  Γ l B  Γ ⊩Empty B) Uᵣ Emptyᵣ
                 x  extractMaybeEmb (U-elim x))
                 x  extractMaybeEmb (Empty-elim′ D x))
                U≢Empty′

U≢Emptyⱼ : Γ  U  Empty  
U≢Emptyⱼ U≡Empty =
  let _ , ⊢Empty = syntacticEq U≡Empty
  in  U≢Empty-red (id ⊢Empty) U≡Empty

-- U and Unit
U≢Unit′ :  {B l l′}
       ([U] : Γ ⊩′⟨ l ⟩U)
       ([Unit] : Γ ⊩Unit B)
      ShapeView Γ l l′ _ _ (Uᵣ [U]) (Unitᵣ [Unit])  
U≢Unit′ a b ()

U≢Unit-red :  {B}  Γ  B ⇒* Unit  Γ  U  B  
U≢Unit-red D = A≢B  Γ l A  Γ ⊩′⟨ l ⟩U)  Γ l B  Γ ⊩Unit B) Uᵣ Unitᵣ
                 x  extractMaybeEmb (U-elim x))
                 x  extractMaybeEmb (Unit-elim′ D x))
                U≢Unit′

U≢Unitⱼ : Γ  U  Unit  
U≢Unitⱼ U≡Unit =
  let _ , ⊢Unit = syntacticEq U≡Unit
  in  U≢Unit-red (id ⊢Unit) U≡Unit

-- ℕ and Empty

ℕ≢Empty′ :  {B l l'}
           ([ℕ] : Γ ⊩ℕ )
           ([Empty] : Γ ⊩Empty B)
            ShapeView Γ l l' _ _ (ℕᵣ [ℕ]) (Emptyᵣ [Empty])  
ℕ≢Empty′ a b ()

ℕ≢Empty-red :  {B}  Γ  B ⇒* Empty  Γ    B  
ℕ≢Empty-red D = A≢B  Γ l A  Γ ⊩ℕ A)  Γ l B  Γ ⊩Empty B) ℕᵣ Emptyᵣ
                 x  extractMaybeEmb (ℕ-elim x))
                 x  extractMaybeEmb (Empty-elim′ D x))
                ℕ≢Empty′

ℕ≢Emptyⱼ : Γ    Empty  
ℕ≢Emptyⱼ ℕ≡Empty =
  let _ , ⊢Empty = syntacticEq ℕ≡Empty
  in  ℕ≢Empty-red (id ⊢Empty) ℕ≡Empty

-- ℕ and Unit

ℕ≢Unit′ :  {B l l'}
           ([ℕ] : Γ ⊩ℕ )
           ([Unit] : Γ ⊩Unit B)
            ShapeView Γ l l' _ _ (ℕᵣ [ℕ]) (Unitᵣ [Unit])  
ℕ≢Unit′ a b ()

ℕ≢Unit-red :  {B}  Γ  B ⇒* Unit  Γ    B  
ℕ≢Unit-red D = A≢B  Γ l A  Γ ⊩ℕ A)  Γ l B  Γ ⊩Unit B) ℕᵣ Unitᵣ
                 x  extractMaybeEmb (ℕ-elim x))
                 x  extractMaybeEmb (Unit-elim′ D x))
                ℕ≢Unit′

ℕ≢Unitⱼ : Γ    Unit  
ℕ≢Unitⱼ ℕ≡Unit =
  let _ , ⊢Unit = syntacticEq ℕ≡Unit
  in  ℕ≢Unit-red (id ⊢Unit) ℕ≡Unit

-- Empty and Unit

Empty≢Unit′ :  {B l l'}
           ([Empty] : Γ ⊩Empty Empty)
           ([Unit] : Γ ⊩Unit B)
            ShapeView Γ l l' _ _ (Emptyᵣ [Empty]) (Unitᵣ [Unit])  
Empty≢Unit′ a b ()

Empty≢Unit-red :  {B}  Γ  B ⇒* Unit  Γ  Empty  B  
Empty≢Unit-red D = A≢B  Γ l A  Γ ⊩Empty A)  Γ l B  Γ ⊩Unit B) Emptyᵣ Unitᵣ
                 x  extractMaybeEmb (Empty-elim x))
                 x  extractMaybeEmb (Unit-elim′ D x))
                Empty≢Unit′

Empty≢Unitⱼ : Γ  Empty  Unit  
Empty≢Unitⱼ Empty≡Unit =
  let _ , ⊢Unit = syntacticEq Empty≡Unit
  in  Empty≢Unit-red (id ⊢Unit) Empty≡Unit

-- Universe and binding types

U≢B′ :  {B l l′} W
       ([U] : Γ ⊩′⟨ l ⟩U)
       ([W] : Γ ⊩′⟨ l′ ⟩B⟨ W  B)
      ShapeView Γ l l′ _ _ (Uᵣ [U]) (Bᵣ W [W])  
U≢B′ W a b ()

U≢B-red :  {B F G} W  Γ  B ⇒*  W  F  G  Γ  U  B  
U≢B-red W D = A≢B  Γ l A  Γ ⊩′⟨ l ⟩U)
                   Γ l A  Γ ⊩′⟨ l ⟩B⟨ W  A) Uᵣ (Bᵣ W)
                   x  extractMaybeEmb (U-elim x))
                   x  extractMaybeEmb (B-elim′ W D x))
                  (U≢B′ W)

-- U and Π F ▹ G for any F and G cannot be judgmentally equal.
U≢B :  {F G} W  Γ  U   W  F  G  
U≢B W U≡W =
  let _ , ⊢W = syntacticEq U≡W
  in  U≢B-red W (id ⊢W) U≡W

U≢Π :  {Γ : Con Term n} {F G p q}  _
U≢Π {Γ = Γ} {F} {G} {p} {q} = U≢B {Γ = Γ} {F} {G} ( p q)
U≢Σ :  {Γ : Con Term n} {F G p q m}  _
U≢Σ {Γ = Γ} {F} {G} {p} {q} {m} = U≢B {Γ = Γ} {F} {G} ( m p q)

U≢ΠΣⱼ : Γ  U  ΠΣ⟨ b  p , q  F  G  
U≢ΠΣⱼ {b = BMΠ}   = U≢Π
U≢ΠΣⱼ {b = BMΣ _} = U≢Σ

U≢ne′ :  {K l l′}
       ([U] : Γ ⊩′⟨ l ⟩U)
       ([K] : Γ ⊩ne K)
      ShapeView Γ l l′ _ _ (Uᵣ [U]) (ne [K])  
U≢ne′ a b ()

U≢ne-red :  {B K}  Γ  B ⇒* K  Neutral K  Γ  U  B  
U≢ne-red D neK = A≢B  Γ l A  Γ ⊩′⟨ l ⟩U)  Γ l B  Γ ⊩ne B) Uᵣ ne
                      x  extractMaybeEmb (U-elim x))
                      x  extractMaybeEmb (ne-elim′ D neK x))
                     U≢ne′

-- U and K for any neutral K cannot be judgmentally equal.
U≢ne :  {K}  Neutral K  Γ  U  K  
U≢ne neK U≡K =
  let _ , ⊢K = syntacticEq U≡K
  in  U≢ne-red (id ⊢K) neK U≡K

ℕ≢B′ :  {A B l l′} W
       ([ℕ] : Γ ⊩ℕ A)
       ([W] : Γ ⊩′⟨ l′ ⟩B⟨ W  B)
      ShapeView Γ l l′ _ _ (ℕᵣ [ℕ]) (Bᵣ W [W])  
ℕ≢B′ W a b ()

ℕ≢B-red :  {A B F G} W  Γ  A ⇒*   Γ  B ⇒*  W  F  G  Γ  A  B  
ℕ≢B-red W D D′ = A≢B  Γ l A  Γ ⊩ℕ A)
                      Γ l A  Γ ⊩′⟨ l ⟩B⟨ W  A) ℕᵣ (Bᵣ W)
                      x  extractMaybeEmb (ℕ-elim′ D x))
                      x  extractMaybeEmb (B-elim′ W D′ x))
                     (ℕ≢B′ W)

-- ℕ and B F ▹ G for any F and G cannot be judgmentally equal.
ℕ≢B :  {F G} W  Γ     W  F  G  
ℕ≢B W ℕ≡W =
  let ⊢ℕ , ⊢W = syntacticEq ℕ≡W
  in  ℕ≢B-red W (id ⊢ℕ) (id ⊢W) ℕ≡W

ℕ≢Π :  {Γ : Con Term n} {F G p q}  _
ℕ≢Π {Γ = Γ} {F} {G} {p} {q} = ℕ≢B {Γ = Γ} {F} {G} ( p q)
ℕ≢Σ :  {Γ : Con Term n} {F G p q m}  _
ℕ≢Σ {Γ = Γ} {F} {G} {p} {q} {m} = ℕ≢B {Γ = Γ} {F} {G} ( m p q)

ℕ≢ΠΣⱼ : Γ    ΠΣ⟨ b  p , q  F  G  
ℕ≢ΠΣⱼ {b = BMΠ}   = ℕ≢Π
ℕ≢ΠΣⱼ {b = BMΣ _} = ℕ≢Σ

-- Empty and Π
Empty≢B′ :  {A B l l′} W
       ([Empty] : Γ ⊩Empty A)
       ([W] : Γ ⊩′⟨ l′ ⟩B⟨ W  B)
      ShapeView Γ l l′ _ _ (Emptyᵣ [Empty]) (Bᵣ W [W])  
Empty≢B′ W a b ()

Empty≢B-red :  {A B F G} W  Γ  A ⇒* Empty  Γ  B ⇒*  W  F  G  Γ  A  B  
Empty≢B-red W D D′ = A≢B  Γ l A  Γ ⊩Empty A)
                          Γ l A  Γ ⊩′⟨ l ⟩B⟨ W  A) Emptyᵣ (Bᵣ W)
                          x  extractMaybeEmb (Empty-elim′ D x))
                          x  extractMaybeEmb (B-elim′ W D′ x))
                         (Empty≢B′ W)

Empty≢Bⱼ :  {F G} W  Γ  Empty   W  F  G  
Empty≢Bⱼ W Empty≡W =
  let ⊢Empty , ⊢W = syntacticEq Empty≡W
  in  Empty≢B-red W (id ⊢Empty) (id ⊢W) Empty≡W

Empty≢Πⱼ :  {Γ : Con Term n} {F G p q}  _
Empty≢Πⱼ {Γ = Γ} {F} {G} {p} {q} = Empty≢Bⱼ {Γ = Γ} {F} {G} ( p q)
Empty≢Σⱼ :  {Γ : Con Term n} {F G p q m}  _
Empty≢Σⱼ {Γ = Γ} {F} {G} {p} {q} {m} =
  Empty≢Bⱼ {Γ = Γ} {F} {G} ( m p q)

Empty≢ΠΣⱼ : Γ  Empty  ΠΣ⟨ b  p , q  F  G  
Empty≢ΠΣⱼ {b = BMΠ}   = Empty≢Πⱼ
Empty≢ΠΣⱼ {b = BMΣ _} = Empty≢Σⱼ

-- Unit and Π
Unit≢B′ :  {A B l l′} W
       ([Unit] : Γ ⊩Unit A)
       ([W] : Γ ⊩′⟨ l′ ⟩B⟨ W  B)
      ShapeView Γ l l′ _ _ (Unitᵣ [Unit]) (Bᵣ W [W])  
Unit≢B′ W a b ()

Unit≢B-red :  {A B F G} W  Γ  A ⇒* Unit  Γ  B ⇒*  W  F  G  Γ  A  B  
Unit≢B-red W D D′ = A≢B  Γ l A  Γ ⊩Unit A)
                     Γ l A  Γ ⊩′⟨ l ⟩B⟨ W  A) Unitᵣ (Bᵣ W)
                     x  extractMaybeEmb (Unit-elim′ D x))
                     x  extractMaybeEmb (B-elim′ W D′ x))
                    (Unit≢B′ W)

Unit≢Bⱼ :  {F G} W  Γ  Unit   W  F  G  
Unit≢Bⱼ W Unit≡W =
  let ⊢Unit , ⊢W = syntacticEq Unit≡W
  in  Unit≢B-red W (id ⊢Unit) (id ⊢W) Unit≡W

Unit≢Πⱼ :  {Γ : Con Term n} {F G p q}  _
Unit≢Πⱼ {Γ = Γ} {F} {G} {p} {q} = Unit≢Bⱼ {Γ = Γ} {F} {G} ( p q)
Unit≢Σⱼ :  {Γ : Con Term n} {F G p q m}  _
Unit≢Σⱼ {Γ = Γ} {F} {G} {p} {q} {m} = Unit≢Bⱼ {Γ = Γ} {F} {G} ( m p q)

Unit≢ΠΣⱼ : Γ  Unit  ΠΣ⟨ b  p , q  F  G  
Unit≢ΠΣⱼ {b = BMΠ}   = Unit≢Πⱼ
Unit≢ΠΣⱼ {b = BMΣ _} = Unit≢Σⱼ

ℕ≢ne′ :  {A K l l′}
       ([ℕ] : Γ ⊩ℕ A)
       ([K] : Γ ⊩ne K)
      ShapeView Γ l l′ _ _ (ℕᵣ [ℕ]) (ne [K])  
ℕ≢ne′ a b ()

ℕ≢ne-red :  {A B K}  Γ  A ⇒*   Γ  B ⇒* K  Neutral K  Γ  A  B  
ℕ≢ne-red D D′ neK = A≢B  Γ l A  Γ ⊩ℕ A)  Γ l B  Γ ⊩ne B) ℕᵣ ne
                         x  extractMaybeEmb (ℕ-elim′ D x))
                         x  extractMaybeEmb (ne-elim′ D′ neK x))
                        ℕ≢ne′

-- ℕ and K for any neutral K cannot be judgmentally equal.
ℕ≢ne :  {K}  Neutral K  Γ    K  
ℕ≢ne neK ℕ≡K =
  let ⊢ℕ , ⊢K = syntacticEq ℕ≡K
  in  ℕ≢ne-red (id ⊢ℕ) (id ⊢K) neK ℕ≡K

-- Empty and neutral
Empty≢ne′ :  {A K l l′}
       ([Empty] : Γ ⊩Empty A)
       ([K] : Γ ⊩ne K)
      ShapeView Γ l l′ _ _ (Emptyᵣ [Empty]) (ne [K])  
Empty≢ne′ a b ()

Empty≢ne-red :  {A B K}  Γ  A ⇒* Empty  Γ  B ⇒* K  Neutral K  Γ  A  B  
Empty≢ne-red D D′ neK = A≢B  Γ l A  Γ ⊩Empty A)  Γ l B  Γ ⊩ne B) Emptyᵣ ne
                         x  extractMaybeEmb (Empty-elim′ D x))
                         x  extractMaybeEmb (ne-elim′ D′ neK x))
                        Empty≢ne′

Empty≢neⱼ :  {K}  Neutral K  Γ  Empty  K  
Empty≢neⱼ neK Empty≡K =
  let ⊢Empty , ⊢K = syntacticEq Empty≡K
  in  Empty≢ne-red (id ⊢Empty) (id ⊢K) neK Empty≡K

-- Unit and neutral
Unit≢ne′ :  {A K l l′}
       ([Unit] : Γ ⊩Unit A)
       ([K] : Γ ⊩ne K)
      ShapeView Γ l l′ _ _ (Unitᵣ [Unit]) (ne [K])  
Unit≢ne′ a b ()

Unit≢ne-red :  {A B K}  Γ  A ⇒* Unit  Γ  B ⇒* K  Neutral K  Γ  A  B  
Unit≢ne-red D D′ neK = A≢B  Γ l A  Γ ⊩Unit A)  Γ l B  Γ ⊩ne B) Unitᵣ ne
                         x  extractMaybeEmb (Unit-elim′ D x))
                         x  extractMaybeEmb (ne-elim′ D′ neK x))
                        Unit≢ne′

Unit≢neⱼ :  {K}  Neutral K  Γ  Unit  K  
Unit≢neⱼ neK Unit≡K =
  let ⊢Unit , ⊢K = syntacticEq Unit≡K
  in  Unit≢ne-red (id ⊢Unit) (id ⊢K) neK Unit≡K

B≢ne′ :  {A K l l′} W
       ([W] : Γ ⊩′⟨ l ⟩B⟨ W  A)
       ([K] : Γ ⊩ne K)
      ShapeView Γ l l′ _ _ (Bᵣ W [W]) (ne [K])  
B≢ne′ W a b ()

B≢ne-red :  {A B F G K} W  Γ  A ⇒*  W  F  G  Γ  B ⇒* K  Neutral K
      Γ  A  B  
B≢ne-red W D D′ neK = A≢B  Γ l A  Γ ⊩′⟨ l ⟩B⟨ W  A)
                           Γ l B  Γ ⊩ne B) (Bᵣ W) ne
                           x  extractMaybeEmb (B-elim′ W D x))
                           x  extractMaybeEmb (ne-elim′ D′ neK x))
                          (B≢ne′ W)

-- ⟦ W ⟧ F ▹ G and K for any W, F, G and neutral K cannot be judgmentally equal.
B≢ne :  {F G K} W  Neutral K  Γ   W  F  G  K  
B≢ne W neK W≡K =
  let ⊢W , ⊢K = syntacticEq W≡K
  in  B≢ne-red W (id ⊢W) (id ⊢K) neK W≡K

Π≢ne :  {Γ : Con Term n} {F G K p q}  _
Π≢ne {Γ = Γ} {F} {G} {K} {p} {q} = B≢ne {Γ = Γ} {F} {G} {K} ( p q)
Σ≢ne :  {Γ : Con Term n} {F G K p q m}  _
Σ≢ne {Γ = Γ} {F} {G} {K} {p} {q} {m} =
  B≢ne {Γ = Γ} {F} {G} {K} ( m p q)

ΠΣ≢ne : Neutral K  Γ  ΠΣ⟨ b  p , q  F  G  K  
ΠΣ≢ne {b = BMΠ}   = B≢ne ( _ _)
ΠΣ≢ne {b = BMΣ _} = B≢ne ( _ _ _)

-- Π and Σ
Π≢Σ′ :  {A B l l′ p q q′ m}
       ([A] : Γ ⊩′⟨ l ⟩B⟨  p q  A)
       ([B] : Γ ⊩′⟨ l′ ⟩B⟨  m p′ q′  B)
      ShapeView Γ l l′ _ _ (Bᵣ ( p q) [A]) (Bᵣ ( m p′ q′) [B])  
Π≢Σ′ _ _ ()

Π≢Σ-red :  {A B F G H E m}  Γ  A ⇒* Π p , q  F  G
          Γ  B ⇒* Σ⟨ m  p′ , q′  H  E  Γ  A  B  
Π≢Σ-red {p′ = p′} {q′ = q′} {m = m} D D′ = A≢B
   Γ l A  Γ ⊩′⟨ l ⟩B⟨ BΠ!  A)
   Γ l A  Γ ⊩′⟨ l ⟩B⟨  m p′ q′  A) (Bᵣ BΠ!) (Bᵣ BΣ!)
   x  extractMaybeEmb (B-elim′ BΠ! D x))
   x  extractMaybeEmb (B-elim′ BΣ! D′ x))
  Π≢Σ′

Π≢Σⱼ :  {F G H E m}  Γ  Π p , q  F  G  Σ⟨ m  p′ , q′  H  E  
Π≢Σⱼ Π≡Σ =
  let ⊢Π , ⊢Σ = syntacticEq Π≡Σ
  in  Π≢Σ-red (id ⊢Π) (id ⊢Σ) Π≡Σ

Σₚ≢Σᵣ′ :
   {A B l l′ q q′}
  ([A] : Γ ⊩′⟨ l ⟩B⟨  Σₚ p q  A)
  ([B] : Γ ⊩′⟨ l′ ⟩B⟨  Σᵣ p′ q′  B) 
  ShapeView Γ l l′ _ _ (Bᵣ ( Σₚ p q) [A]) (Bᵣ ( Σᵣ p′ q′) [B])  
Σₚ≢Σᵣ′ _ _ ()

Σₚ≢Σᵣ-red :  {A B F G H E}  Γ  A ⇒* Σₚ p , q  F  G
           Γ  B ⇒* Σᵣ p′ , q′  H  E  Γ  A  B  
Σₚ≢Σᵣ-red D D′ = A≢B  Γ l A  Γ ⊩′⟨ l ⟩B⟨ BΣₚ  A)
                      Γ l B  Γ ⊩′⟨ l ⟩B⟨ BΣᵣ  B)
                     (Bᵣ BΣ!) (Bᵣ BΣ!)
                      x  extractMaybeEmb (B-elim′ BΣ! D x))
                      x  extractMaybeEmb (B-elim′ BΣ! D′ x))
                     Σₚ≢Σᵣ′

Σₚ≢Σᵣⱼ :  {F G H E}  Γ  Σₚ p , q  F  G  Σᵣ p′ , q′  H  E  
Σₚ≢Σᵣⱼ Σₚ≡Σᵣ =
  let ⊢Σₚ , ⊢Σᵣ = syntacticEq Σₚ≡Σᵣ
  in  Σₚ≢Σᵣ-red (id ⊢Σₚ) (id ⊢Σᵣ) Σₚ≡Σᵣ

-- If No-η-equality A holds, then A is not a Π-type.

No-η-equality→≢Π : No-η-equality A  Γ  A  Π p , q  B  C  
No-η-equality→≢Π = λ where
  Uₙ         U≡Π      U≢ΠΣⱼ U≡Π
  Σᵣₙ        Σᵣ≡Π     Π≢Σⱼ (sym Σᵣ≡Π)
  Emptyₙ     Empty≡Π  Empty≢ΠΣⱼ Empty≡Π
  ℕₙ         ℕ≡Π      ℕ≢ΠΣⱼ ℕ≡Π
  (neₙ A-ne) A≡Π      ΠΣ≢ne A-ne (sym A≡Π)

-- If No-η-equality A holds, then A is not a Σ-type with η-equality.

No-η-equality→≢Σₚ : No-η-equality A  Γ  A  Σₚ p , q  B  C  
No-η-equality→≢Σₚ = λ where
  Uₙ         U≡Σ      U≢ΠΣⱼ U≡Σ
  Σᵣₙ        Σᵣ≡Σ     Σₚ≢Σᵣⱼ (sym Σᵣ≡Σ)
  Emptyₙ     Empty≡Σ  Empty≢ΠΣⱼ Empty≡Σ
  ℕₙ         ℕ≡Σ      ℕ≢ΠΣⱼ ℕ≡Σ
  (neₙ A-ne) A≡Σ      ΠΣ≢ne A-ne (sym A≡Σ)

-- If No-η-equality A holds, then A is not the unit type with
-- η-equality.

No-η-equality→≢Unit : No-η-equality A  Γ  A  Unit  
No-η-equality→≢Unit = λ where
  Uₙ         U≡Unit      U≢Unitⱼ U≡Unit
  Σᵣₙ        Σᵣ≡Unit     Unit≢ΠΣⱼ (sym Σᵣ≡Unit)
  Emptyₙ     Empty≡Unit  Empty≢Unitⱼ Empty≡Unit
  ℕₙ         ℕ≡Unit      ℕ≢Unitⱼ ℕ≡Unit
  (neₙ A-ne) A≡Unit      Unit≢neⱼ A-ne (sym A≡Unit)

-- If A is a type without η-equality, then a non-neutral WHNF is not
-- definitionally equal at type A to any neutral term.

whnf≢ne :
  No-η-equality A  Whnf t  ¬ Neutral t  Neutral u 
  ¬ Γ  t  u  A
whnf≢ne {A = A} {t = t} {u = u} ¬-A-η t-whnf ¬-t-ne u-ne =
  uncurry lemma ∘→ reducibleEqTerm
  where
  A⇒*no-η : Γ  A :⇒*: B  No-η-equality B
  A⇒*no-η [ _ , _ , A⇒*B ] =
    case whnfRed* A⇒*B (No-η-equality→Whnf ¬-A-η) of λ {
      PE.refl 
    ¬-A-η }

  ¬t⇒*ne : Γ  t :⇒*: v  B  ¬ Neutral v
  ¬t⇒*ne [ _ , _ , t⇒*v ] v-ne =
    case whnfRed*Term t⇒*v t-whnf of λ {
      PE.refl 
    ¬-t-ne v-ne }

  u⇒*ne : Γ  u :⇒*: v  B  Neutral v
  u⇒*ne [ _ , _ , u⇒*v ] =
    case whnfRed*Term u⇒*v (ne u-ne) of λ {
      PE.refl 
    u-ne }

  lemma : ([A] : Γ ⊩⟨ l  A)  ¬ Γ ⊩⟨ l  t  u  A / [A]
  lemma = λ where
    (ℕᵣ _) (ℕₜ₌ _ _ _ u⇒*zero _ zeroᵣ) 
      U.zero≢ne (u⇒*ne u⇒*zero) PE.refl
    (ℕᵣ _) (ℕₜ₌ _ _ _ u⇒*suc _ (sucᵣ _)) 
      U.suc≢ne (u⇒*ne u⇒*suc) PE.refl
    (ℕᵣ _) (ℕₜ₌ _ _ t⇒*v _ _ (ne (neNfₜ₌ v-ne _ _))) 
      ¬t⇒*ne t⇒*v v-ne
    (Emptyᵣ _) (Emptyₜ₌ _ _ t⇒*v _ _ (ne (neNfₜ₌ v-ne _ _))) 
      ¬t⇒*ne t⇒*v v-ne
    (Unitᵣ (Unitₜ A⇒*Unit _)) _ 
      case A⇒*no-η A⇒*Unit of λ where
        (neₙ ())
    (ne _) (neₜ₌ _ _ t⇒*v _ (neNfₜ₌ v-ne _ _)) 
      ¬t⇒*ne t⇒*v v-ne
    (Bᵣ BΠ! (Bᵣ _ _ A⇒*Π _ _ _ _ _ _ _)) _ 
      case A⇒*no-η A⇒*Π of λ where
        (neₙ ())
    (Bᵣ BΣₚ (Bᵣ _ _ A⇒*Σ _ _ _ _ _ _ _)) _ 
      case A⇒*no-η A⇒*Σ of λ where
        (neₙ ())
    (Bᵣ BΣᵣ _) (_ , _ , _ , u⇒*w , _ , _ , _ , _ , prodₙ , _) 
      U.prod≢ne (u⇒*ne u⇒*w) PE.refl
    (Bᵣ BΣᵣ _) (_ , _ , t⇒*v , _ , _ , _ , _ , ne v-ne , _) 
      ¬t⇒*ne t⇒*v v-ne
    (Bᵣ BΣᵣ _) (_ , _ , _ , _ , _ , _ , _ , prodₙ , ne _  , ())
    (Uᵣ _) (Uₜ₌ _ _ t⇒*A u⇒*B A-type B-type A≡B _ _ _) 
      case B-type of λ where
        ΠΣₙ        U.ΠΣ≢ne _  (u⇒*ne u⇒*B) PE.refl
        ℕₙ         U.ℕ≢ne     (u⇒*ne u⇒*B) PE.refl
        Emptyₙ     U.Empty≢ne (u⇒*ne u⇒*B) PE.refl
        Unitₙ      U.Unit≢ne  (u⇒*ne u⇒*B) PE.refl
        (ne B-ne)  case A-type of λ where
          (ne A-ne)  ⊥-elim (¬t⇒*ne t⇒*A A-ne)
          ΠΣₙ        ΠΣ≢ne     B-ne (univ A≡B)
          ℕₙ         ℕ≢ne      B-ne (univ A≡B)
          Emptyₙ     Empty≢neⱼ B-ne (univ A≡B)
          Unitₙ      Unit≢neⱼ  B-ne (univ A≡B)
    (emb 0<1 [A]) [t≡u] 
      lemma [A] [t≡u]

-- The term zero is not definitionally equal (at type ℕ) to any
-- neutral term.

zero≢ne :
  Neutral t 
  ¬ Γ  zero  t  
zero≢ne = whnf≢ne ℕₙ zeroₙ  ())

-- The term suc t is not definitionally equal (at type ℕ) to any
-- neutral term.

suc≢ne :
  Neutral u 
  ¬ Γ  suc t  u  
suc≢ne = whnf≢ne ℕₙ sucₙ  ())

-- The term prodᵣ p t u is not definitionally equal (at type
-- Σᵣ p , q ▷ A ▹ B) to any neutral term.

prodᵣ≢ne :
  Neutral v 
  ¬ Γ  prodᵣ p t u  v  Σᵣ p , q  A  B
prodᵣ≢ne = whnf≢ne Σᵣₙ prodₙ  ())