------------------------------------------------------------------------
-- Properties of reduction closures
--
-- Further substitution theorems for reduction closures follow from
-- the fundamental lemma. These are located in
-- Definition.Typed.Consequeces.RedSteps
------------------------------------------------------------------------

open import Definition.Typed.Restrictions

module Definition.Typed.RedSteps
  {} {M : Set }
  (R : Type-restrictions M)
  where

open import Definition.Untyped M hiding (_∷_)
open import Definition.Typed R
open import Tools.Nat

private
  variable
    n : Nat
    Γ : Con Term n
    A B C : Term n
    a t t′ u r : Term n
    p q : M

-- Concatenation of type reduction closures
_⇨*_ : Γ  A ⇒* B  Γ  B ⇒* C  Γ  A ⇒* C
id ⊢B ⇨* B⇒C = B⇒C
(A⇒A′  A′⇒B) ⇨* B⇒C = A⇒A′  (A′⇒B ⇨* B⇒C)

-- Concatenation of term reduction closures
_⇨∷*_ : Γ  t ⇒* u  A  Γ  u ⇒* r  A  Γ  t ⇒* r  A
id ⊢u ⇨∷* u⇒r = u⇒r
(t⇒t′  t′⇒u) ⇨∷* u⇒r = t⇒t′  (t′⇒u ⇨∷* u⇒r)

-- Conversion of reduction closures
conv* : Γ  t ⇒* u  A  Γ  A  B  Γ  t ⇒* u  B
conv* (id x) A≡B = id (conv x A≡B)
conv* (x  d) A≡B = conv x A≡B  conv* d A≡B

-- Universe of reduction closures
univ* : Γ  A ⇒* B  U  Γ  A ⇒* B
univ* (id x) = id (univ x)
univ* (x  A⇒B) = univ x  univ* A⇒B

-- Application substitution of reduction closures
app-subst* : Γ  t ⇒* t′  Π p , q  A  B  Γ  a  A
            Γ  t ∘⟨ p  a ⇒* t′ ∘⟨ p  a  B [ a ]₀
app-subst* (id x) a₁ = id (x ∘ⱼ a₁)
app-subst* (x  t⇒t′) a₁ = app-subst x a₁  app-subst* t⇒t′ a₁

-- First projection substitution of reduction closures
fst-subst* : Γ  t ⇒* t′  Σₚ p , q  A  B
            Γ  A
            Γ  A  B
            Γ  fst p t ⇒* fst p t′  A
fst-subst* (id x) ⊢F ⊢G = id (fstⱼ ⊢F ⊢G x)
fst-subst* (x  t⇒t′) ⊢F ⊢G = (fst-subst ⊢F ⊢G x)  (fst-subst* t⇒t′ ⊢F ⊢G)