open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.LogicalRelation.ShapeView
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
{{eqrel : EqRelSet R}}
where
open EqRelSet {{...}}
open Type-restrictions R
open import Definition.Untyped M hiding (K)
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Definition.Typed R
open import Definition.Typed.Properties R
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Properties.Escape R
open import Definition.LogicalRelation.Properties.Kit R
open import Definition.LogicalRelation.Properties.Reflexivity R
open import Tools.Function
open import Tools.Level
open import Tools.Nat using (Nat; 1+)
open import Tools.Product
open import Tools.Empty using (⊥; ⊥-elim)
import Tools.PropositionalEquality as PE
private
variable
ℓ : Level
n : Nat
Γ : Con Term n
A B C t u : Term n
p q : M
l l′ l″ l₁ l₁′ l₂ l₂′ l₃ l₃′ : Universe-level
s : Strength
data MaybeEmb
{ℓ′} (l : Universe-level) (⊩⟨_⟩ : Universe-level → Set ℓ′) :
Set ℓ′ where
noemb : ⊩⟨ l ⟩ → MaybeEmb l ⊩⟨_⟩
emb : l′ <ᵘ l → MaybeEmb l′ ⊩⟨_⟩ → MaybeEmb l ⊩⟨_⟩
_⊩⟨_⟩U_ : (Γ : Con Term n) (l : Universe-level) (A : Term n) → Set a
Γ ⊩⟨ l ⟩U A = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩U A)
_⊩⟨_⟩ℕ_ : (Γ : Con Term n) (l : Universe-level) (A : Term n) → Set a
Γ ⊩⟨ l ⟩ℕ A = MaybeEmb l (λ l′ → Γ ⊩ℕ A)
_⊩⟨_⟩Empty_ : (Γ : Con Term n) (l : Universe-level) (A : Term n) → Set a
Γ ⊩⟨ l ⟩Empty A = MaybeEmb l (λ l′ → Γ ⊩Empty A)
_⊩⟨_⟩Unit⟨_⟩_ :
(Γ : Con Term n) (l : Universe-level) (s : Strength) (A : Term n) →
Set a
Γ ⊩⟨ l ⟩Unit⟨ s ⟩ A = MaybeEmb l (λ l′ → Γ ⊩Unit⟨ l′ , s ⟩ A)
_⊩⟨_⟩ne_ : (Γ : Con Term n) (l : Universe-level) (A : Term n) → Set a
Γ ⊩⟨ l ⟩ne A = MaybeEmb l (λ _ → Γ ⊩ne A)
_⊩⟨_⟩B⟨_⟩_ :
(Γ : Con Term n) (l : Universe-level) (W : BindingType) (A : Term n) →
Set a
Γ ⊩⟨ l ⟩B⟨ W ⟩ A = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩B⟨ W ⟩ A)
_⊩⟨_⟩Id_ : Con Term n → Universe-level → Term n → Set a
Γ ⊩⟨ l ⟩Id A = MaybeEmb l (λ l′ → Γ ⊩′⟨ l′ ⟩Id A)
U-intr : ∀ {A l} → Γ ⊩⟨ l ⟩U A → Γ ⊩⟨ l ⟩ A
U-intr (noemb x) = Uᵣ x
U-intr (emb p x) = emb-<-⊩ p (U-intr x)
ℕ-intr : ∀ {A l} → Γ ⊩⟨ l ⟩ℕ A → Γ ⊩⟨ l ⟩ A
ℕ-intr (noemb x) = ℕᵣ x
ℕ-intr (emb p x) = emb-<-⊩ p (ℕ-intr x)
Empty-intr : ∀ {A l} → Γ ⊩⟨ l ⟩Empty A → Γ ⊩⟨ l ⟩ A
Empty-intr (noemb x) = Emptyᵣ x
Empty-intr (emb p x) = emb-<-⊩ p (Empty-intr x)
Unit-intr : ∀ {A l s} → Γ ⊩⟨ l ⟩Unit⟨ s ⟩ A → Γ ⊩⟨ l ⟩ A
Unit-intr (noemb x) = Unitᵣ x
Unit-intr (emb p x) = emb-<-⊩ p (Unit-intr x)
ne-intr : ∀ {A l} → Γ ⊩⟨ l ⟩ne A → Γ ⊩⟨ l ⟩ A
ne-intr (noemb x) = ne x
ne-intr (emb p x) = emb-<-⊩ p (ne-intr x)
B-intr : ∀ {A l} W → Γ ⊩⟨ l ⟩B⟨ W ⟩ A → Γ ⊩⟨ l ⟩ A
B-intr W (noemb x) = Bᵣ W x
B-intr W (emb p x) = emb-<-⊩ p (B-intr W x)
Id-intr : Γ ⊩⟨ l ⟩Id A → Γ ⊩⟨ l ⟩ A
Id-intr (noemb ⊩A) = Idᵣ ⊩A
Id-intr (emb p ⊩A) = emb-<-⊩ p (Id-intr ⊩A)
U-elim′ : Γ ⊢ A ⇒* U l′ → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩U A
U-elim′ _ (Uᵣ ⊩U) = noemb ⊩U
U-elim′ A⇒U (ℕᵣ D) with whrDet* (A⇒U , Uₙ) (D , ℕₙ)
... | ()
U-elim′ A⇒U (Emptyᵣ D) with whrDet* (A⇒U , Uₙ) (D , Emptyₙ)
... | ()
U-elim′ A⇒U (Unitᵣ (Unitₜ D _)) with whrDet* (A⇒U , Uₙ) (D , Unitₙ)
... | ()
U-elim′ A⇒U (ne′ _ _ D neK K≡K) =
⊥-elim (U≢ne neK (whrDet* (A⇒U , Uₙ) (D , ne neK)))
U-elim′ A⇒U (Bᵣ′ W _ _ D _ _ _ _ _) =
⊥-elim (U≢B W (whrDet* (A⇒U , Uₙ) (D , ⟦ W ⟧ₙ)))
U-elim′ A⇒U (Idᵣ ⊩A) =
case whrDet* (A⇒U , Uₙ) (_⊩ₗId_.⇒*Id ⊩A , Idₙ) of λ ()
U-elim′ A⇒U (emb ≤ᵘ-refl x) with U-elim′ A⇒U x
U-elim′ A⇒U (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
U-elim′ A⇒U (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
U-elim′ A⇒U (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (U-elim′ A⇒U (emb p x))
U-elim : Γ ⊩⟨ l ⟩ U l′ → Γ ⊩⟨ l ⟩U U l′
U-elim ⊩U = U-elim′ (id (escape ⊩U)) ⊩U
ℕ-elim′ : ∀ {A l} → Γ ⊢ A ⇒* ℕ → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ℕ A
ℕ-elim′ D (Uᵣ′ l′ l< D') with whrDet* (D , ℕₙ) (D' , Uₙ)
... | ()
ℕ-elim′ D (ℕᵣ D′) = noemb D′
ℕ-elim′ D (ne′ _ _ D′ neK K≡K) =
⊥-elim (ℕ≢ne neK (whrDet* (D , ℕₙ) (D′ , ne neK)))
ℕ-elim′ D (Bᵣ′ W _ _ D′ _ _ _ _ _) =
⊥-elim (ℕ≢B W (whrDet* (D , ℕₙ) (D′ , ⟦ W ⟧ₙ)))
ℕ-elim′ D (Emptyᵣ D′) with whrDet* (D , ℕₙ) (D′ , Emptyₙ)
... | ()
ℕ-elim′ D (Unitᵣ (Unitₜ D′ _)) with whrDet* (D , ℕₙ) (D′ , Unitₙ)
... | ()
ℕ-elim′ A⇒*Nat (Idᵣ ⊩A) =
case whrDet* (A⇒*Nat , ℕₙ) (_⊩ₗId_.⇒*Id ⊩A , Idₙ) of λ ()
ℕ-elim′ A⇒ℕ (emb ≤ᵘ-refl x) with ℕ-elim′ A⇒ℕ x
ℕ-elim′ A⇒ℕ (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
ℕ-elim′ A⇒ℕ (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
ℕ-elim′ A⇒ℕ (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (ℕ-elim′ A⇒ℕ (emb p x))
ℕ-elim : ∀ {l} → Γ ⊩⟨ l ⟩ ℕ → Γ ⊩⟨ l ⟩ℕ ℕ
ℕ-elim [ℕ] = ℕ-elim′ (id (escape [ℕ])) [ℕ]
Empty-elim′ : ∀ {A l} → Γ ⊢ A ⇒* Empty → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩Empty A
Empty-elim′ D (Uᵣ′ l′ l< D') with whrDet* (D , Emptyₙ) (D' , Uₙ)
... | ()
Empty-elim′ D (Emptyᵣ D′) = noemb D′
Empty-elim′ D (Unitᵣ (Unitₜ D′ _))
with whrDet* (D , Emptyₙ) (D′ , Unitₙ)
... | ()
Empty-elim′ D (ne′ _ _ D′ neK K≡K) =
⊥-elim (Empty≢ne neK (whrDet* (D , Emptyₙ) (D′ , ne neK)))
Empty-elim′ D (Bᵣ′ W _ _ D′ _ _ _ _ _) =
⊥-elim (Empty≢B W (whrDet* (D , Emptyₙ) (D′ , ⟦ W ⟧ₙ)))
Empty-elim′ D (ℕᵣ D′) with whrDet* (D , Emptyₙ) (D′ , ℕₙ)
... | ()
Empty-elim′ A⇒*Empty (Idᵣ ⊩A) =
case whrDet* (A⇒*Empty , Emptyₙ) (_⊩ₗId_.⇒*Id ⊩A , Idₙ) of λ ()
Empty-elim′ A⇒E (emb ≤ᵘ-refl x) with Empty-elim′ A⇒E x
Empty-elim′ A⇒E (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
Empty-elim′ A⇒E (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
Empty-elim′ A⇒E (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (Empty-elim′ A⇒E (emb p x))
Empty-elim : ∀ {l} → Γ ⊩⟨ l ⟩ Empty → Γ ⊩⟨ l ⟩Empty Empty
Empty-elim [Empty] = Empty-elim′ (id (escape [Empty])) [Empty]
Unit-elim′ : Γ ⊢ A ⇒* Unit s l → Γ ⊩⟨ l′ ⟩ A → Γ ⊩⟨ l′ ⟩Unit⟨ s ⟩ A
Unit-elim′ D (Uᵣ′ l′ l< D') with whrDet* (D , Unitₙ) (D' , Uₙ)
... | ()
Unit-elim′ D (Unitᵣ (Unitₜ D′ ok))
with whrDet* (D′ , Unitₙ) (D , Unitₙ)
... | PE.refl = noemb (Unitₜ D′ ok)
Unit-elim′ D (Emptyᵣ D′) with whrDet* (D , Unitₙ) (D′ , Emptyₙ)
... | ()
Unit-elim′ D (ne′ _ _ D′ neK K≡K) =
⊥-elim (Unit≢ne neK (whrDet* (D , Unitₙ) (D′ , ne neK)))
Unit-elim′ D (Bᵣ′ W _ _ D′ _ _ _ _ _) =
⊥-elim (Unit≢B W (whrDet* (D , Unitₙ) (D′ , ⟦ W ⟧ₙ)))
Unit-elim′ D (ℕᵣ D′) with whrDet* (D , Unitₙ) (D′ , ℕₙ)
... | ()
Unit-elim′ A⇒*Unit (Idᵣ ⊩A) =
case whrDet* (A⇒*Unit , Unitₙ) (_⊩ₗId_.⇒*Id ⊩A , Idₙ) of λ ()
Unit-elim′ A⇒U (emb ≤ᵘ-refl x) with Unit-elim′ A⇒U x
Unit-elim′ A⇒U (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
Unit-elim′ A⇒U (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
Unit-elim′ A⇒U (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (Unit-elim′ A⇒U (emb p x))
Unit-elim : Γ ⊩⟨ l′ ⟩ Unit s l → Γ ⊩⟨ l′ ⟩Unit⟨ s ⟩ Unit s l
Unit-elim [Unit] = Unit-elim′ (id (escape [Unit])) [Unit]
ne-elim′ : ∀ {A l K} → Γ ⊢ A ⇒* K → Neutral K → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ne A
ne-elim′ D neK (Uᵣ′ l′ l< D') =
⊥-elim (U≢ne neK (whrDet* (D' , Uₙ) (D , ne neK)))
ne-elim′ D neK (ℕᵣ D′) = ⊥-elim (ℕ≢ne neK (whrDet* (D′ , ℕₙ) (D , ne neK)))
ne-elim′ D neK (Emptyᵣ D′) = ⊥-elim (Empty≢ne neK (whrDet* (D′ , Emptyₙ) (D , ne neK)))
ne-elim′ D neK (Unitᵣ (Unitₜ D′ _)) =
⊥-elim (Unit≢ne neK (whrDet* (D′ , Unitₙ) (D , ne neK)))
ne-elim′ D neK (ne′ inc _ D′ neK′ K≡K) = noemb (ne inc _ D′ neK′ K≡K)
ne-elim′ D neK (Bᵣ′ W _ _ D′ _ _ _ _ _) =
⊥-elim (B≢ne W neK (whrDet* (D′ , ⟦ W ⟧ₙ) (D , ne neK)))
ne-elim′ A⇒*ne n (Idᵣ ⊩A) =
⊥-elim (Id≢ne n (whrDet* (_⊩ₗId_.⇒*Id ⊩A , Idₙ) (A⇒*ne , ne n)))
ne-elim′ A⇒n neK (emb ≤ᵘ-refl x) with ne-elim′ A⇒n neK x
ne-elim′ A⇒n neK (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
ne-elim′ A⇒n neK (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
ne-elim′ A⇒n neK (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (ne-elim′ A⇒n neK (emb p x))
ne-elim : ∀ {l K} → Neutral K → Γ ⊩⟨ l ⟩ K → Γ ⊩⟨ l ⟩ne K
ne-elim neK [K] = ne-elim′ (id (escape [K])) neK [K]
B-elim′ : ∀ {A F G l} W → Γ ⊢ A ⇒* ⟦ W ⟧ F ▹ G → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩B⟨ W ⟩ A
B-elim′ W D (Uᵣ′ l′ l< D') = ⊥-elim (U≢B W (whrDet* (D' , Uₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (ℕᵣ D′) =
⊥-elim (ℕ≢B W (whrDet* (D′ , ℕₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (Emptyᵣ D′) =
⊥-elim (Empty≢B W (whrDet* (D′ , Emptyₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (Unitᵣ (Unitₜ D′ _)) =
⊥-elim (Unit≢B W (whrDet* (D′ , Unitₙ) (D , ⟦ W ⟧ₙ)))
B-elim′ W D (ne′ _ _ D′ neK K≡K) =
⊥-elim (B≢ne W neK (whrDet* (D , ⟦ W ⟧ₙ) (D′ , ne neK)))
B-elim′ BΠ! D (Bᵣ′ BΣ! _ _ D′ _ _ _ _ _)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | ()
B-elim′ BΣ! D (Bᵣ′ BΠ! _ _ D′ _ _ _ _ _)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | ()
B-elim′ BΠ! D (Bᵣ′ BΠ! F G D′ A≡A [F] [G] G-ext ok)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | PE.refl = noemb (Bᵣ F G D′ A≡A [F] [G] G-ext ok)
B-elim′ BΣ! D (Bᵣ′ BΣ! F G D′ A≡A [F] [G] G-ext ok)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | PE.refl = noemb (Bᵣ F G D′ A≡A [F] [G] G-ext ok)
B-elim′ _ A⇒*B (Idᵣ ⊩A) =
⊥-elim $ Id≢⟦⟧▷ _ $
whrDet* (_⊩ₗId_.⇒*Id ⊩A , Idₙ) (A⇒*B , ⟦ _ ⟧ₙ)
B-elim′ W A⇒B (emb ≤ᵘ-refl x) with B-elim′ W A⇒B x
B-elim′ W A⇒B (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
B-elim′ W A⇒B (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
B-elim′ W A⇒B (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (B-elim′ W A⇒B (emb p x))
B-elim : ∀ {F G l} W → Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G → Γ ⊩⟨ l ⟩B⟨ W ⟩ ⟦ W ⟧ F ▹ G
B-elim W [Π] = B-elim′ W (id (escape [Π])) [Π]
Π-elim : ∀ {F G l} → Γ ⊩⟨ l ⟩ Π p , q ▷ F ▹ G → Γ ⊩⟨ l ⟩B⟨ BΠ p q ⟩ Π p , q ▷ F ▹ G
Π-elim [Π] = B-elim′ BΠ! (id (escape [Π])) [Π]
Σ-elim :
∀ {F G m l} →
Γ ⊩⟨ l ⟩ Σ p , q ▷ F ▹ G → Γ ⊩⟨ l ⟩B⟨ BΣ m p q ⟩ Σ p , q ▷ F ▹ G
Σ-elim [Σ] = B-elim′ BΣ! (id (escape [Σ])) [Σ]
Id-elim′ : Γ ⊢ A ⇒* Id B t u → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩Id A
Id-elim′ ⇒*Id (Uᵣ′ _′ _ D') with whrDet* (⇒*Id , Idₙ) (D' , Uₙ)
... | ()
Id-elim′ ⇒*Id (ℕᵣ ⇒*ℕ) =
case whrDet* (⇒*ℕ , ℕₙ) (⇒*Id , Idₙ) of λ ()
Id-elim′ ⇒*Id (Emptyᵣ ⇒*Empty) =
case whrDet* (⇒*Empty , Emptyₙ) (⇒*Id , Idₙ) of λ ()
Id-elim′ ⇒*Id (Unitᵣ ⊩Unit) =
case whrDet* (_⊩Unit⟨_,_⟩_.⇒*-Unit ⊩Unit , Unitₙ) (⇒*Id , Idₙ)
of λ ()
Id-elim′ ⇒*Id (ne′ _ _ ⇒*ne n _) =
⊥-elim (Id≢ne n (whrDet* (⇒*Id , Idₙ) (⇒*ne , ne n)))
Id-elim′ ⇒*Id (Bᵣ′ _ _ _ ⇒*B _ _ _ _ _) =
⊥-elim (Id≢⟦⟧▷ _ (whrDet* (⇒*Id , Idₙ) (⇒*B , ⟦ _ ⟧ₙ)))
Id-elim′ _ (Idᵣ ⊩A) =
noemb ⊩A
Id-elim′ ⇒*Id (emb ≤ᵘ-refl x) with Id-elim′ ⇒*Id x
Id-elim′ ⇒*Id (emb ≤ᵘ-refl x) | noemb x₁ = emb ≤ᵘ-refl (noemb x₁)
Id-elim′ ⇒*Id (emb ≤ᵘ-refl x) | emb x1 k = emb ≤ᵘ-refl (emb x1 k)
Id-elim′ ⇒*Id (emb (≤ᵘ-step p) x) = emb ≤ᵘ-refl (Id-elim′ ⇒*Id (emb p x))
opaque
Id-elim : Γ ⊩⟨ l ⟩ Id A t u → Γ ⊩⟨ l ⟩Id Id A t u
Id-elim ⊩Id = Id-elim′ (id (escape ⊩Id)) ⊩Id
extractMaybeEmb : ∀ {l ⊩⟨_⟩} → MaybeEmb {ℓ′ = a} l ⊩⟨_⟩ → ∃ λ l′ → ⊩⟨ l′ ⟩
extractMaybeEmb (noemb x) = _ , x
extractMaybeEmb (emb _ x) = extractMaybeEmb x
opaque
extractMaybeEmb′ :
{P : Universe-level → Set ℓ} →
MaybeEmb l P → ∃ λ l′ → l′ ≤ᵘ l × P l′
extractMaybeEmb′ (noemb p) = _ , ≤ᵘ-refl , p
extractMaybeEmb′ (emb ≤ᵘ-refl p) =
case extractMaybeEmb′ p of λ where
(l , ≤ᵘ-refl , p) →
l , ≤ᵘ-step ≤ᵘ-refl , p
(l , ≤ᵘ-step l< , p) → l , (≤ᵘ-step (≤ᵘ-step l<) , p)
extractMaybeEmb′ (emb (≤ᵘ-step s) p) =
let (l , a , p) = extractMaybeEmb′ (emb s p)
in l , (lemma a , p)
where
lemma : l ≤ᵘ l′ → l ≤ᵘ 1+ l′
lemma = flip ≤ᵘ-trans ≤ᵘ1+
data ShapeView (Γ : Con Term n) : ∀ l l′ A B (p : Γ ⊩⟨ l ⟩ A) (q : Γ ⊩⟨ l′ ⟩ B) → Set a where
Uᵥ : ∀ {A B l l′} UA UB → ShapeView Γ l l′ A B (Uᵣ UA) (Uᵣ UB)
ℕᵥ : ∀ {A B l l′} ℕA ℕB → ShapeView Γ l l′ A B (ℕᵣ ℕA) (ℕᵣ ℕB)
Emptyᵥ : ∀ {A B l l′} EmptyA EmptyB → ShapeView Γ l l′ A B (Emptyᵣ EmptyA) (Emptyᵣ EmptyB)
Unitᵥ : ∀ {A B l l′ s} UnitA UnitB → ShapeView Γ l l′ A B (Unitᵣ {s = s} UnitA) (Unitᵣ {s = s} UnitB)
ne : ∀ {A B l l′} neA neB
→ ShapeView Γ l l′ A B (ne neA) (ne neB)
Bᵥ : ∀ {A B l l′} W BA BB
→ ShapeView Γ l l′ A B (Bᵣ W BA) (Bᵣ W BB)
Idᵥ : ∀ ⊩A ⊩B → ShapeView Γ l l′ A B (Idᵣ ⊩A) (Idᵣ ⊩B)
embᵥ₁ : ∀ p {⊩A ⊩B} →
ShapeView Γ l₁′ l₂ A B (⊩<⇔⊩ p .proj₁ ⊩A) ⊩B →
ShapeView Γ l₁ l₂ A B (emb p ⊩A) ⊩B
embᵥ₂ : ∀ p {⊩A ⊩B} →
ShapeView Γ l₁ l₂′ A B ⊩A (⊩<⇔⊩ p .proj₁ ⊩B) →
ShapeView Γ l₁ l₂ A B ⊩A (emb p ⊩B)
goodCases : ∀ {l l′} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A] → ShapeView Γ l l′ A B [A] [B]
goodCases (Uᵣ UA) (Uᵣ UB) A≡B = Uᵥ UA UB
goodCases (ℕᵣ ℕA) (ℕᵣ ℕB) A≡B = ℕᵥ ℕA ℕB
goodCases (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) A≡B = Emptyᵥ EmptyA EmptyB
goodCases (Unitᵣ UnitA) (Unitᵣ UnitB@(Unitₜ D _)) D′
with whrDet* (D , Unitₙ) (D′ , Unitₙ)
... | PE.refl = Unitᵥ UnitA UnitB
goodCases (ne neA) (ne neB) A≡B = ne neA neB
goodCases (Bᵣ BΠ! ΠA) (Bᵣ′ BΠ! F G D A≡A [F] [G] G-ext _)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | PE.refl = Bᵥ BΠ! ΠA (Bᵣ F G D A≡A [F] [G] G-ext _)
goodCases (Bᵣ BΣ! ΣA) (Bᵣ′ BΣ! F G D A≡A [F] [G] G-ext ok)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′])
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | PE.refl = Bᵥ BΣ! ΣA (Bᵣ F G D A≡A [F] [G] G-ext ok)
goodCases (Idᵣ ⊩A) (Idᵣ ⊩B) _ = Idᵥ ⊩A ⊩B
goodCases {Γ} {B} ⊩A (emb p _) A≡B = embᵥ₂ p (lemma p)
where
lemma :
(p : l <ᵘ l′) {⊩<B : Γ ⊩<⟨ p ⟩ B} →
ShapeView _ _ _ _ _ ⊩A (⊩<⇔⊩ p .proj₁ ⊩<B)
lemma ≤ᵘ-refl = goodCases _ _ A≡B
lemma (≤ᵘ-step p) = lemma p
goodCases {Γ} {A} {B} (emb p _) ⊩B A≡B = embᵥ₁ p (lemma p A≡B)
where
lemma :
(p : l <ᵘ l′) {⊩<A : Γ ⊩<⟨ p ⟩ A} →
Γ ⊩⟨ l′ ⟩ A ≡ B / emb p ⊩<A →
ShapeView _ _ _ _ _ (⊩<⇔⊩ p .proj₁ ⊩<A) ⊩B
lemma ≤ᵘ-refl = goodCases _ _
lemma (≤ᵘ-step p) = lemma p
goodCases (Uᵣ _) (ℕᵣ D') D with whrDet* (D , Uₙ) (D' , ℕₙ)
... | ()
goodCases (Uᵣ _) (Emptyᵣ D') D with whrDet* (D , Uₙ) (D' , Emptyₙ)
... | ()
goodCases (Uᵣ _) (Unitᵣ (Unitₜ D' _)) D with whrDet* (D , Uₙ) (D' , Unitₙ)
... | ()
goodCases (Uᵣ′ _ _ ⊢Γ) (ne′ _ _ D' neK K≡K) D =
⊥-elim (U≢ne neK (whrDet* ( D , Uₙ ) (D' , ne neK)))
goodCases (Uᵣ′ _ _ _) (Bᵣ′ W _ _ D' _ _ _ _ _) D =
⊥-elim (U≢B W (whrDet* ( D , Uₙ ) (D' , ⟦ W ⟧ₙ )))
goodCases (Uᵣ _) (Idᵣ ⊩B) D =
case whrDet* (D , Uₙ) (_⊩ₗId_.⇒*Id ⊩B , Idₙ) of λ ()
goodCases (ℕᵣ _) (Uᵣ (Uᵣ _ _ D')) D with whrDet* (D , ℕₙ) (D' , Uₙ)
... | ()
goodCases (ℕᵣ _) (Emptyᵣ D') D with whrDet* (D , ℕₙ) (D' , Emptyₙ)
... | ()
goodCases (ℕᵣ x) (Unitᵣ (Unitₜ D' _)) D
with whrDet* (D , ℕₙ) (D' , Unitₙ)
... | ()
goodCases (ℕᵣ D) (ne′ _ _ D₁ neK K≡K) A≡B =
⊥-elim (ℕ≢ne neK (whrDet* (A≡B , ℕₙ) (D₁ , ne neK)))
goodCases (ℕᵣ _) (Bᵣ′ W _ _ D _ _ _ _ _) A≡B =
⊥-elim (ℕ≢B W (whrDet* (A≡B , ℕₙ) (D , ⟦ W ⟧ₙ)))
goodCases (ℕᵣ _) (Idᵣ ⊩B) ⇒*ℕ =
case whrDet* (⇒*ℕ , ℕₙ) (_⊩ₗId_.⇒*Id ⊩B , Idₙ) of λ ()
goodCases (Emptyᵣ _) (Uᵣ (Uᵣ _ _ D')) D with whrDet* (D , Emptyₙ) (D' , Uₙ)
... | ()
goodCases (Emptyᵣ _) (Unitᵣ (Unitₜ D' _)) D
with whrDet* (D' , Unitₙ) (D , Emptyₙ)
... | ()
goodCases (Emptyᵣ _) (ℕᵣ D') D with whrDet* (D' , ℕₙ) (D , Emptyₙ)
... | ()
goodCases (Emptyᵣ D) (ne′ _ _ D₁ neK K≡K) A≡B =
⊥-elim (Empty≢ne neK (whrDet* (A≡B , Emptyₙ) (D₁ , ne neK)))
goodCases (Emptyᵣ _) (Bᵣ′ W _ _ D _ _ _ _ _) A≡B =
⊥-elim (Empty≢B W (whrDet* (A≡B , Emptyₙ) (D , ⟦ W ⟧ₙ)))
goodCases (Emptyᵣ _) (Idᵣ ⊩B) ⇒*Empty =
case whrDet* (⇒*Empty , Emptyₙ) (_⊩ₗId_.⇒*Id ⊩B , Idₙ) of λ ()
goodCases (Unitᵣ _) (Uᵣ (Uᵣ _ _ D')) D with whrDet* (D , Unitₙ) (D' , Uₙ)
... | ()
goodCases (Unitᵣ _) (Emptyᵣ D') D with whrDet* (D' , Emptyₙ) (D , Unitₙ)
... | ()
goodCases (Unitᵣ _) (ℕᵣ D') D with whrDet* (D' , ℕₙ) (D , Unitₙ)
... | ()
goodCases (Unitᵣ D) (ne′ _ _ D₁ neK K≡K) A≡B =
⊥-elim (Unit≢ne neK (whrDet* (A≡B , Unitₙ) (D₁ , ne neK)))
goodCases (Unitᵣ _) (Bᵣ′ W _ _ D _ _ _ _ _) A≡B =
⊥-elim (Unit≢B W (whrDet* (A≡B , Unitₙ) (D , ⟦ W ⟧ₙ)))
goodCases (Unitᵣ _) (Idᵣ ⊩B) ⇒*Unit =
case whrDet* (⇒*Unit , Unitₙ) (_⊩ₗId_.⇒*Id ⊩B , Idₙ) of λ ()
goodCases (ne _) (Uᵣ (Uᵣ _ _ D')) (ne₌ _ M D′ neM K≡M) =
⊥-elim (U≢ne neM (whrDet* (D' , Uₙ) (D′ , ne neM)))
goodCases (ne _) (ℕᵣ D₁) (ne₌ _ M D′ neM K≡M) =
⊥-elim (ℕ≢ne neM (whrDet* (D₁ , ℕₙ) (D′ , ne neM)))
goodCases (ne _) (Emptyᵣ D₁) (ne₌ _ M D′ neM K≡M) =
⊥-elim (Empty≢ne neM (whrDet* (D₁ , Emptyₙ) (D′ , ne neM)))
goodCases (ne _) (Unitᵣ (Unitₜ D₁ _)) (ne₌ _ M D′ neM K≡M) =
⊥-elim (Unit≢ne neM (whrDet* (D₁ , Unitₙ) (D′ , ne neM)))
goodCases (ne _) (Bᵣ′ W _ _ D₁ _ _ _ _ _) (ne₌ _ _ D₂ neM _) =
⊥-elim (B≢ne W neM (whrDet* (D₁ , ⟦ W ⟧ₙ) (D₂ , ne neM)))
goodCases (ne _) (Idᵣ ⊩B) A≡B =
⊥-elim $ Id≢ne N.neM $
whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (N.D′ , ne N.neM)
where
module N = _⊩ne_≡_/_ A≡B
goodCases (Bᵣ W x) (Uᵣ (Uᵣ _ _ D')) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (U≢B W (whrDet* (D' , Uₙ) (D′ , ⟦ W ⟧ₙ)))
goodCases (Bᵣ W x) (ℕᵣ D₁) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (ℕ≢B W (whrDet* (D₁ , ℕₙ) (D′ , ⟦ W ⟧ₙ)))
goodCases (Bᵣ W x) (Emptyᵣ D₁) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Empty≢B W (whrDet* (D₁ , Emptyₙ) (D′ , ⟦ W ⟧ₙ)))
goodCases
(Bᵣ W x) (Unitᵣ (Unitₜ D₁ _)) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (Unit≢B W (whrDet* (D₁ , Unitₙ) (D′ , ⟦ W ⟧ₙ)))
goodCases (Bᵣ W x) (ne′ _ _ D neK K≡K) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
⊥-elim (B≢ne W neK (whrDet* (D′ , ⟦ W ⟧ₙ) (D , ne neK)))
goodCases (Bᵣ′ BΠ! _ _ _ _ _ _ _ _) (Bᵣ′ BΣ! _ _ D₁ _ _ _ _ _)
(B₌ _ _ D₂ _ _ _) =
⊥-elim (Π≢Σ (whrDet* (D₂ , ΠΣₙ) (D₁ , ΠΣₙ)))
goodCases (Bᵣ′ BΣ! _ _ _ _ _ _ _ _) (Bᵣ′ BΠ! _ _ D₁ _ _ _ _ _)
(B₌ _ _ D₂ _ _ _) =
⊥-elim (Π≢Σ (whrDet* (D₁ , ΠΣₙ) (D₂ , ΠΣₙ)))
goodCases (Bᵣ _ _) (Idᵣ ⊩B) A≡B =
⊥-elim $ Id≢⟦⟧▷ _ $
whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (_⊩ₗB⟨_⟩_≡_/_.D′ A≡B , ⟦ _ ⟧ₙ)
goodCases (Idᵣ _) (Uᵣ (Uᵣ _ _ D')) A≡B =
case whrDet* (_⊩ₗId_≡_/_.⇒*Id′ A≡B , Idₙ) (D' , Uₙ)
of λ ()
goodCases (Idᵣ _) (ℕᵣ ⇒*ℕ) A≡B =
case whrDet* (_⊩ₗId_≡_/_.⇒*Id′ A≡B , Idₙ) (⇒*ℕ , ℕₙ)
of λ ()
goodCases (Idᵣ _) (Emptyᵣ ⇒*Empty) A≡B =
case
whrDet* (_⊩ₗId_≡_/_.⇒*Id′ A≡B , Idₙ) (⇒*Empty , Emptyₙ)
of λ ()
goodCases (Idᵣ _) (Unitᵣ ⊩B) A≡B =
case
whrDet*
(_⊩ₗId_≡_/_.⇒*Id′ A≡B , Idₙ)
(_⊩Unit⟨_,_⟩_.⇒*-Unit ⊩B , Unitₙ)
of λ ()
goodCases (Idᵣ _) (ne ⊩B) A≡B =
⊥-elim $ Id≢ne N.neK $
whrDet* (_⊩ₗId_≡_/_.⇒*Id′ A≡B , Idₙ) (N.D , ne N.neK)
where
module N = _⊩ne_ ⊩B
goodCases (Idᵣ _) (Bᵣ _ ⊩B) A≡B =
⊥-elim $ Id≢⟦⟧▷ _ $
whrDet* (_⊩ₗId_≡_/_.⇒*Id′ A≡B , Idₙ) (_⊩ₗB⟨_⟩_.D ⊩B , ⟦ _ ⟧ₙ)
goodCasesRefl : ∀ {l l′ A} ([A] : Γ ⊩⟨ l ⟩ A) ([A′] : Γ ⊩⟨ l′ ⟩ A)
→ ShapeView Γ l l′ A A [A] [A′]
goodCasesRefl [A] [A′] = goodCases [A] [A′] (reflEq [A])
data ShapeView₃ (Γ : Con Term n) : ∀ l l′ l″ A B C
(p : Γ ⊩⟨ l ⟩ A)
(q : Γ ⊩⟨ l′ ⟩ B)
(r : Γ ⊩⟨ l″ ⟩ C) → Set a where
Uᵥ : ∀ {A B C l l′ l″} UA UB UC → ShapeView₃ Γ l l′ l″ A B C (Uᵣ UA) (Uᵣ UB) (Uᵣ UC)
ℕᵥ : ∀ {A B C l l′ l″} ℕA ℕB ℕC
→ ShapeView₃ Γ l l′ l″ A B C (ℕᵣ ℕA) (ℕᵣ ℕB) (ℕᵣ ℕC)
Emptyᵥ : ∀ {A B C l l′ l″} EmptyA EmptyB EmptyC
→ ShapeView₃ Γ l l′ l″ A B C (Emptyᵣ EmptyA) (Emptyᵣ EmptyB) (Emptyᵣ EmptyC)
Unitᵥ : ∀ {A B C l l′ l″ s} UnitA UnitB UnitC
→ ShapeView₃ Γ l l′ l″ A B C (Unitᵣ {s = s} UnitA)
(Unitᵣ {s = s} UnitB) (Unitᵣ {s = s} UnitC)
ne : ∀ {A B C l l′ l″} neA neB neC
→ ShapeView₃ Γ l l′ l″ A B C (ne neA) (ne neB) (ne neC)
Bᵥ : ∀ {A B C l l′ l″} W W′ W″ BA BB BC
→ ShapeView₃ Γ l l′ l″ A B C (Bᵣ W BA) (Bᵣ W′ BB) (Bᵣ W″ BC)
Idᵥ :
∀ ⊩A ⊩B ⊩C → ShapeView₃ Γ l l′ l″ A B C (Idᵣ ⊩A) (Idᵣ ⊩B) (Idᵣ ⊩C)
embᵥ₁ : ∀ p {⊩A ⊩B ⊩C} →
ShapeView₃ Γ l₁′ l₂ l₃ A B C (⊩<⇔⊩ p .proj₁ ⊩A) ⊩B ⊩C →
ShapeView₃ Γ l₁ l₂ l₃ A B C (emb p ⊩A) ⊩B ⊩C
embᵥ₂ : ∀ p {⊩A ⊩B ⊩C} →
ShapeView₃ Γ l₁ l₂′ l₃ A B C ⊩A (⊩<⇔⊩ p .proj₁ ⊩B) ⊩C →
ShapeView₃ Γ l₁ l₂ l₃ A B C ⊩A (emb p ⊩B) ⊩C
embᵥ₃ : ∀ p {⊩A ⊩B ⊩C} →
ShapeView₃ Γ l₁ l₂ l₃′ A B C ⊩A ⊩B (⊩<⇔⊩ p .proj₁ ⊩C) →
ShapeView₃ Γ l₁ l₂ l₃ A B C ⊩A ⊩B (emb p ⊩C)
combine : ∀ {l l′ l″ l‴ A B C [A] [B] [B]′ [C]}
→ ShapeView Γ l l′ A B [A] [B]
→ ShapeView Γ l″ l‴ B C [B]′ [C]
→ ShapeView₃ Γ l l′ l‴ A B C [A] [B] [C]
combine (Uᵥ UA₁ UB₁) (Uᵥ UA UB) = Uᵥ UA₁ UB₁ UB
combine (ℕᵥ ℕA₁ ℕB₁) (ℕᵥ ℕA ℕB) = ℕᵥ ℕA₁ ℕB₁ ℕB
combine (Emptyᵥ EmptyA₁ EmptyB₁) (Emptyᵥ EmptyA EmptyB) = Emptyᵥ EmptyA₁ EmptyB₁ EmptyB
combine (Unitᵥ UnitA₁ UnitB₁@(Unitₜ D _)) (Unitᵥ (Unitₜ D′ _) UnitB)
with whrDet* (D , Unitₙ) (D′ , Unitₙ)
... | PE.refl = Unitᵥ UnitA₁ UnitB₁ UnitB
combine (ne neA₁ neB₁) (ne neA neB) = ne neA₁ neB₁ neB
combine (Bᵥ BΠ! ΠA₁ (Bᵣ F G D A≡A [F] [G] G-ext ok))
(Bᵥ BΠ! (Bᵣ _ _ D′ _ _ _ _ _) ΠB)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | PE.refl =
Bᵥ BΠ! BΠ! BΠ! ΠA₁ (Bᵣ F G D A≡A [F] [G] G-ext ok) ΠB
combine (Bᵥ BΣ! ΣA₁ (Bᵣ F G D A≡A [F] [G] G-ext ok))
(Bᵥ BΣ! (Bᵣ _ _ D′ _ _ _ _ _) ΣB)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | PE.refl =
Bᵥ BΣ! BΣ! BΣ! ΣA₁ (Bᵣ F G D A≡A [F] [G] G-ext ok) ΣB
combine (Idᵥ ⊩A ⊩B) (Idᵥ _ ⊩C) =
Idᵥ ⊩A ⊩B ⊩C
combine (embᵥ₁ p A≡B) B≡C = embᵥ₁ p (combine A≡B B≡C)
combine (embᵥ₂ p A≡B) B≡C = embᵥ₂ p (combine A≡B B≡C)
combine A≡B (embᵥ₁ p B≡C) = combine A≡B B≡C
combine A≡B (embᵥ₂ p B≡C) = embᵥ₃ p (combine A≡B B≡C)
combine (Uᵥ UA (Uᵣ _ _ ⇒*U)) (ℕᵥ ℕA ℕB) with whrDet* (⇒*U , Uₙ) (ℕA , ℕₙ)
... | ()
combine (Uᵥ UA (Uᵣ _ _ ⇒*U)) (Emptyᵥ EA EB) with whrDet* (⇒*U , Uₙ) (EA , Emptyₙ)
... | ()
combine (Uᵥ UA (Uᵣ _ _ ⇒*U)) (Unitᵥ (Unitₜ UnA _) UnB) with whrDet* (⇒*U , Uₙ) (UnA , Unitₙ)
... | ()
combine (Uᵥ UA (Uᵣ _ _ ⇒*U)) (ne (ne _ _ D neK K≡K) neB) =
⊥-elim (U≢ne neK (whrDet* (⇒*U , Uₙ) (D , ne neK)))
combine (Uᵥ UA (Uᵣ _ _ ⇒*U)) (Bᵥ W (Bᵣ _ _ D _ _ _ _ _) _) =
⊥-elim (U≢B W (whrDet* (⇒*U , Uₙ) (D , ⟦ W ⟧ₙ)))
combine (Uᵥ UA (Uᵣ _ _ ⇒*U)) (Idᵥ ⊩B′ _) =
case whrDet* (⇒*U , Uₙ) (_⊩ₗId_.⇒*Id ⊩B′ , Idₙ) of λ ()
combine (ℕᵥ ℕA ℕB) (Uᵥ (Uᵣ _ _ ⇒*U) UB) with whrDet* (ℕB , ℕₙ) (⇒*U , Uₙ)
... | ()
combine (ℕᵥ ℕA ℕB) (Emptyᵥ EmptyA EmptyB) with whrDet* (ℕB , ℕₙ) (EmptyA , Emptyₙ)
... | ()
combine (ℕᵥ ℕA ℕB) (Unitᵥ (Unitₜ UnA _) UnB)
with whrDet* (ℕB , ℕₙ) (UnA , Unitₙ)
... | ()
combine (ℕᵥ ℕA ℕB) (ne (ne _ _ D neK K≡K) neB) =
⊥-elim (ℕ≢ne neK (whrDet* (ℕB , ℕₙ) (D , ne neK)))
combine (ℕᵥ _ ℕB) (Bᵥ W (Bᵣ _ _ D _ _ _ _ _) _) =
⊥-elim (ℕ≢B W (whrDet* (ℕB , ℕₙ) (D , ⟦ W ⟧ₙ)))
combine (ℕᵥ _ ⊩B) (Idᵥ ⊩B′ _) =
case whrDet* (⊩B , ℕₙ) (_⊩ₗId_.⇒*Id ⊩B′ , Idₙ) of λ ()
combine (Emptyᵥ EmptyA EmptyB) (Uᵥ (Uᵣ _ _ ⇒*U) UB) with whrDet* (EmptyB , Emptyₙ) (⇒*U , Uₙ)
... | ()
combine (Emptyᵥ EmptyA EmptyB) (ℕᵥ ℕA ℕB) with whrDet* (EmptyB , Emptyₙ) (ℕA , ℕₙ)
... | ()
combine (Emptyᵥ EmptyA EmptyB) (Unitᵥ (Unitₜ UnA _) UnB)
with whrDet* (EmptyB , Emptyₙ) (UnA , Unitₙ)
... | ()
combine (Emptyᵥ EmptyA EmptyB) (ne (ne _ _ D neK K≡K) neB) =
⊥-elim (Empty≢ne neK (whrDet* (EmptyB , Emptyₙ) (D , ne neK)))
combine
(Emptyᵥ _ EmptyB) (Bᵥ W (Bᵣ _ _ D _ _ _ _ _) _) =
⊥-elim (Empty≢B W (whrDet* (EmptyB , Emptyₙ) (D , ⟦ W ⟧ₙ)))
combine (Emptyᵥ _ ⊩B) (Idᵥ ⊩B′ _) =
case whrDet* (⊩B , Emptyₙ) (_⊩ₗId_.⇒*Id ⊩B′ , Idₙ) of λ ()
combine (Unitᵥ UnitA (Unitₜ UnitB _)) (Uᵥ (Uᵣ _ _ ⇒*U) UB) with whrDet* (UnitB , Unitₙ) (⇒*U , Uₙ)
... | ()
combine (Unitᵥ UnitA (Unitₜ UnitB _)) (ℕᵥ ℕA ℕB)
with whrDet* (UnitB , Unitₙ) (ℕA , ℕₙ)
... | ()
combine (Unitᵥ UnitA (Unitₜ UnitB _)) (Emptyᵥ EmptyA EmptyB)
with whrDet* (UnitB , Unitₙ) (EmptyA , Emptyₙ)
... | ()
combine (Unitᵥ UnitA (Unitₜ UnitB _)) (ne (ne _ _ D neK K≡K) neB) =
⊥-elim (Unit≢ne neK (whrDet* (UnitB , Unitₙ) (D , ne neK)))
combine (Unitᵥ _ (Unitₜ UnitB _)) (Bᵥ W (Bᵣ _ _ D _ _ _ _ _) _) =
⊥-elim (Unit≢B W (whrDet* (UnitB , Unitₙ) (D , ⟦ W ⟧ₙ)))
combine (Unitᵥ _ ⊩B) (Idᵥ ⊩B′ _) =
case
whrDet* (_⊩Unit⟨_,_⟩_.⇒*-Unit ⊩B , Unitₙ) (_⊩ₗId_.⇒*Id ⊩B′ , Idₙ)
of λ ()
combine (ne neA (ne _ _ D neK K≡K)) (Uᵥ (Uᵣ _ _ ⇒*U) UB) =
⊥-elim (U≢ne neK (whrDet* (⇒*U , Uₙ) (D , ne neK)))
combine (ne neA (ne _ _ D neK K≡K)) (ℕᵥ ℕA ℕB) =
⊥-elim (ℕ≢ne neK (whrDet* (ℕA , ℕₙ) (D , ne neK)))
combine (ne neA (ne _ _ D neK K≡K)) (Emptyᵥ EmptyA EmptyB) =
⊥-elim (Empty≢ne neK (whrDet* (EmptyA , Emptyₙ) (D , ne neK)))
combine (ne neA (ne _ _ D neK K≡K)) (Unitᵥ (Unitₜ UnA _) UnB) =
⊥-elim (Unit≢ne neK (whrDet* (UnA , Unitₙ) (D , ne neK)))
combine (ne _ (ne _ _ D neK _)) (Bᵥ W (Bᵣ _ _ D′ _ _ _ _ _) _) =
⊥-elim (B≢ne W neK (whrDet* (D′ , ⟦ W ⟧ₙ) (D , ne neK)))
combine (ne _ ⊩B) (Idᵥ ⊩B′ _) =
⊥-elim $ Id≢ne N.neK $
whrDet* (_⊩ₗId_.⇒*Id ⊩B′ , Idₙ) (N.D , ne N.neK)
where
module N = _⊩ne_ ⊩B
combine (Bᵥ W _ (Bᵣ _ _ D _ _ _ _ _)) (Uᵥ (Uᵣ _ _ ⇒*U) UB) =
⊥-elim (U≢B W (whrDet* (⇒*U , Uₙ) (D , ⟦ W ⟧ₙ)))
combine (Bᵥ W _ (Bᵣ _ _ D _ _ _ _ _)) (ℕᵥ ℕA _) =
⊥-elim (ℕ≢B W (whrDet* (ℕA , ℕₙ) (D , ⟦ W ⟧ₙ)))
combine (Bᵥ W _ (Bᵣ _ _ D _ _ _ _ _)) (Emptyᵥ EmptyA _) =
⊥-elim (Empty≢B W (whrDet* (EmptyA , Emptyₙ) (D , ⟦ W ⟧ₙ)))
combine (Bᵥ W _ (Bᵣ _ _ D _ _ _ _ _)) (Unitᵥ (Unitₜ UnitA _) _) =
⊥-elim (Unit≢B W (whrDet* (UnitA , Unitₙ) (D , ⟦ W ⟧ₙ)))
combine (Bᵥ W _ (Bᵣ _ _ D₁ _ _ _ _ _)) (ne (ne _ _ D neK _) _) =
⊥-elim (B≢ne W neK (whrDet* (D₁ , ⟦ W ⟧ₙ) (D , ne neK)))
combine (Bᵥ BΠ! _ (Bᵣ _ _ D _ _ _ _ _)) (Bᵥ BΣ! (Bᵣ _ _ D′ _ _ _ _ _) _)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | ()
combine (Bᵥ BΣ! _ (Bᵣ _ _ D _ _ _ _ _)) (Bᵥ BΠ! (Bᵣ _ _ D′ _ _ _ _ _) _)
with whrDet* (D , ΠΣₙ) (D′ , ΠΣₙ)
... | ()
combine (Bᵥ _ _ ⊩B) (Idᵥ ⊩B′ _) =
⊥-elim $ Id≢⟦⟧▷ _ $
whrDet* (_⊩ₗId_.⇒*Id ⊩B′ , Idₙ) (_⊩ₗB⟨_⟩_.D ⊩B , ⟦ _ ⟧ₙ)
combine (Idᵥ _ ⊩B) (Uᵥ (Uᵣ _ _ ⇒*U) UB) =
case whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (⇒*U , Uₙ) of λ ()
combine (Idᵥ _ ⊩B) (ℕᵥ ⊩B′ _) =
case whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (⊩B′ , ℕₙ) of λ ()
combine (Idᵥ _ ⊩B) (Emptyᵥ ⊩B′ _) =
case whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (⊩B′ , Emptyₙ) of λ ()
combine (Idᵥ _ ⊩B) (Unitᵥ ⊩B′ _) =
case
whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (_⊩Unit⟨_,_⟩_.⇒*-Unit ⊩B′ , Unitₙ)
of λ ()
combine (Idᵥ _ ⊩B) (ne ⊩B′ _) =
⊥-elim $ Id≢ne N.neK $
whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (N.D , ne N.neK)
where
module N = _⊩ne_ ⊩B′
combine (Idᵥ _ ⊩B) (Bᵥ _ ⊩B′ _) =
⊥-elim $ Id≢⟦⟧▷ _ $
whrDet* (_⊩ₗId_.⇒*Id ⊩B , Idₙ) (_⊩ₗB⟨_⟩_.D ⊩B′ , ⟦ _ ⟧ₙ)