open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typed.Properties.Admissible.U
{a} {M : Set a}
{𝕄 : Modality M}
(TR : Type-restrictions 𝕄)
where
open import Definition.Typed TR
open import Definition.Typed.Inversion.Primitive TR
import Definition.Typed.Properties.Admissible.U.Primitive TR as UP
open import Definition.Typed.Properties.Well-formed TR
open import Definition.Typed.Well-formed TR
open import Definition.Untyped M
open UP public
private variable
Γ : Cons _ _
l : Term _
opaque
⊢U′ : Γ ⊢ l ∷ Level → Γ ⊢ U l
⊢U′ ⊢l =
let ok = inversion-Level-⊢ (wf-⊢∷ ⊢l) in
⊢U (term ok ⊢l)