open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.LogicalRelation.Substitution.Introductions
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
⦃ eqrel : EqRelSet R ⦄
where
open import
Definition.LogicalRelation.Substitution.Introductions.Definition
R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Empty R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Emptyrec R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Identity R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Level R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Lift R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Nat R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Pi R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Pi-Sigma R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Sigma R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Sigma.Strong R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Sigma.Weak R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Unit R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Universe R ⦃ eqrel ⦄ public
open import Definition.LogicalRelation.Substitution.Introductions.Var R ⦃ eqrel ⦄ public