open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.LogicalRelation.Substitution.Introductions.Unit
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
{{eqrel : EqRelSet R}}
where
open EqRelSet {{...}}
open Type-restrictions R
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Neutral.Atomic M type-variant
open import Definition.Untyped.Properties M
open import Definition.Untyped.Whnf M type-variant
open import Definition.Typed R
open import Definition.Typed.Inversion R
open import Definition.Typed.Properties R
open import Definition.Typed.Reasoning.Reduction R
open import Definition.Typed.Stability.Primitive R
open import Definition.Typed.Substitution.Primitive R
open import Definition.Typed.Weakening.Definition R
open import Definition.Typed.Well-formed R
open import Definition.LogicalRelation R ⦃ eqrel ⦄
open import Definition.LogicalRelation.Hidden R ⦃ eqrel ⦄
import Definition.LogicalRelation.Hidden.Restricted R ⦃ eqrel ⦄ as R
open import Definition.LogicalRelation.Properties R ⦃ eqrel ⦄
open import Definition.LogicalRelation.ShapeView R ⦃ eqrel ⦄
open import Definition.LogicalRelation.Substitution R ⦃ eqrel ⦄
open import Definition.LogicalRelation.Substitution.Introductions.Level R ⦃ eqrel ⦄
open import Definition.LogicalRelation.Substitution.Introductions.Universe R ⦃ eqrel ⦄
open import Definition.LogicalRelation.Irrelevance R ⦃ eqrel ⦄
open import Definition.LogicalRelation.Unary R ⦃ eqrel ⦄
open import Tools.Function
open import Tools.Nat using (Nat; 1+)
open import Tools.Product as Σ
import Tools.PropositionalEquality as PE
open import Tools.Relation
open import Tools.Sum
private
variable
m n : Nat
∇ : DCon (Term 0) m
Δ Η : Con Term n
Γ : Cons m n
σ σ₁ σ₂ : Subst _ _
s s₁ s₂ : Strength
l l′ l″ l‴ l₁ l₂ : Universe-level
A A₁ A₂ k k₁ k₂ k′ t t₁ t₂ u u₁ u₂ : Term n
p q : M
opaque
⊩Unit⇔ :
Γ ⊩⟨ l ⟩ Unit s ⇔
(⊢ Γ × Unit-allowed s)
⊩Unit⇔ =
(λ ⊩Unit →
case Unit-view ⊩Unit of λ {
(Unitᵣ (Unitᵣ Unit⇒*Unit ok)) →
wf (escape ⊩Unit) , ok })
, (λ (⊢Γ , ok) →
Unitᵣ′ (id (⊢Unit ⊢Γ ok)) ok)
opaque
unfolding _⊩⟨_⟩_≡_
⊩Unit≡⇔ :
Γ ⊩⟨ l ⟩ Unit s ≡ A ⇔
(Γ ⊢ A ⇒* Unit s ×
Unit-allowed s)
⊩Unit≡⇔ {l} {s} {A} =
(λ (⊩Unit , _ , Unit≡A) →
case Unit-view ⊩Unit of λ {
(Unitᵣ (Unitᵣ Unit⇒*Unit ok)) →
case Unit≡A of λ
(Unit₌ A⇒) →
A⇒ , ok })
, (λ (A⇒*Unit , ok) →
sym-⊩≡
(A ⇒*⟨ A⇒*Unit ⟩⊩
Unit s ∎⟨ ⊩Unit⇔ .proj₂ (wf (redFirst* A⇒*Unit) , ok) ⟩⊩))
opaque
⊩Unit≡Unit⇔ :
Γ ⊩⟨ l ⟩ Unit s₁ ≡ Unit s₂ ⇔
(⊢ Γ × Unit-allowed s₁ × s₁ PE.≡ s₂)
⊩Unit≡Unit⇔ {Γ} {l} {s₁} {s₂} =
Γ ⊩⟨ l ⟩ Unit s₁ ≡ Unit s₂ ⇔⟨ ⊩Unit≡⇔ ⟩
(Γ ⊢ Unit s₂ ⇒* Unit s₁ × Unit-allowed s₁) ⇔⟨ ((λ { (Unit⇒*Unit , ok) →
case Unit-PE-injectivity $ whnfRed* Unit⇒*Unit Unitₙ of λ {
PE.refl →
wf (redFirst* Unit⇒*Unit) , ok , PE.refl }})
, λ { (⊢Γ , ok , PE.refl) →
id (⊢Unit ⊢Γ ok) , ok }) ⟩
(⊢ Γ × Unit-allowed s₁ × s₁ PE.≡ s₂) □⇔
opaque
unfolding _⊩⟨_⟩_≡_∷_ ⊩Unit⇔
⊩≡∷Unit⇔ :
Γ ⊩⟨ l ⟩ t ≡ u ∷ Unit s ⇔
(Unit-allowed s × Γ ⊩Unit⟨ s ⟩ t ≡ u ∷Unit)
⊩≡∷Unit⇔ =
(λ (⊩Unit , t≡u) →
case Unit-view ⊩Unit of λ {
(Unitᵣ (Unitᵣ Unit⇒*Unit ok)) →
ok , t≡u })
, (λ (ok , t≡u@(Unitₜ₌ _ _ (d , _) _ _)) →
⊩Unit⇔ .proj₂ (wfTerm (redFirst*Term d) , ok) , t≡u)
opaque
⊩∷Unit⇔ :
Γ ⊩⟨ l ⟩ t ∷ Unit s ⇔
(Unit-allowed s × Γ ⊩Unit⟨ s ⟩ t ∷Unit)
⊩∷Unit⇔ {Γ} {l} {t} {s} =
Γ ⊩⟨ l ⟩ t ∷ Unit s ⇔⟨ ⊩∷⇔⊩≡∷ ⟩
Γ ⊩⟨ l ⟩ t ≡ t ∷ Unit s ⇔⟨ ⊩≡∷Unit⇔ ⟩
(Unit-allowed s × Γ ⊩Unit⟨ s ⟩ t ≡ t ∷Unit) ⇔˘⟨ (Σ-cong-⇔ λ _ → ⊩Unit∷Unit⇔⊩Unit≡∷Unit) ⟩
(Unit-allowed s × Γ ⊩Unit⟨ s ⟩ t ∷Unit) □⇔
opaque
⊩ᵛUnit→Unit-allowed :
⦃ inc : Var-included or-empty (Γ .vars) ⦄ →
Γ ⊩ᵛ⟨ l ⟩ Unit s →
Unit-allowed s
⊩ᵛUnit→Unit-allowed {Γ} {l} {s} =
Γ ⊩ᵛ⟨ l ⟩ Unit s →⟨ R.⊩→ ∘→ ⊩ᵛ→⊩ ⟩
Γ ⊩⟨ l ⟩ Unit s ⇔⟨ ⊩Unit⇔ ⟩→
(⊢ Γ × Unit-allowed s) →⟨ proj₂ ⟩
Unit-allowed s □
opaque
⊩Unit :
⊢ Γ →
Unit-allowed s →
Γ ⊩⟨ 0ᵘ ⟩ Unit s
⊩Unit ⊢Γ ok = ⊩Unit⇔ .proj₂ (⊢Γ , ok)
opaque
Unitᵗᵛ :
⊩ᵛ Γ →
Unit-allowed s →
Γ ⊩ᵛ⟨ ωᵘ ⟩ Unit s ∷ U zeroᵘ
Unitᵗᵛ ⊩Γ ok =
⊩ᵛ∷⇔ʰ .proj₂
( ⊩ᵛU (zeroᵘᵛ′ ⊩Γ)
, λ _ σ₁≡σ₂ →
let ⊢Δ , _ = escape-⊩ˢ≡∷ σ₁≡σ₂
in Type→⊩≡∷U⇔ Unitₙ Unitₙ .proj₂
( ⊩zeroᵘ ⊢Δ , <ᵘ-ωᵘ
, ⊩Unit≡Unit⇔ .proj₂ (⊢Δ , ok , PE.refl)
, ≅ₜ-Unit-refl ⊢Δ ok
)
)
opaque
Unitᵛ :
⊩ᵛ Γ →
Unit-allowed s →
Γ ⊩ᵛ⟨ ωᵘ ⟩ Unit s
Unitᵛ ⊩Γ ok = ⊩ᵛ∷U→⊩ᵛ (Unitᵗᵛ ⊩Γ ok)
opaque
⊩star :
⊢ Γ →
Unit-allowed s →
Γ ⊩⟨ 0ᵘ ⟩ star s ∷ Unit s
⊩star {s} ⊢Γ ok =
⊩∷Unit⇔ .proj₂
( ok
, Unitₜ _ (id (starⱼ ⊢Γ ok) , starₙ) (Unit-prop′→Unit-prop starᵣ))
opaque
starᵛ :
⊩ᵛ Γ →
Unit-allowed s →
Γ ⊩ᵛ⟨ ωᵘ ⟩ star s ∷ Unit s
starᵛ ⊩Γ ok =
⊩ᵛ∷⇔ʰ .proj₂
( Unitᵛ ⊩Γ ok
, λ ∇′⊇∇ σ₁≡σ₂ →
emb-⊩≡∷ ≤ᵘ-ωᵘ $ refl-⊩≡∷ (⊩star (escape-⊩ˢ≡∷ σ₁≡σ₂ .proj₁) ok)
)
opaque
⊩η-unit :
Γ ⊩⟨ l′ ⟩ t ∷ Unit s →
Γ ⊩⟨ l″ ⟩ u ∷ Unit s →
Unit-with-η s →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ Unit s
⊩η-unit ⊩t ⊩u η =
let
(ok , Unitₜ _ t↘ _) = ⊩∷Unit⇔ .proj₁ ⊩t
(_ , Unitₜ _ u↘ _) = ⊩∷Unit⇔ .proj₁ ⊩u
in ⊩≡∷Unit⇔ .proj₂
( ok
, Unitₜ₌ _ _ t↘ u↘ (Unitₜ₌ˢ η)
)
opaque
η-unitᵛ :
Γ ⊩ᵛ⟨ l′ ⟩ t ∷ Unit s →
Γ ⊩ᵛ⟨ l″ ⟩ u ∷ Unit s →
Unit-with-η s →
Γ ⊩ᵛ⟨ l′ ⟩ t ≡ u ∷ Unit s
η-unitᵛ ⊩t ⊩u η =
⊩ᵛ≡∷⇔ʰ .proj₂
( wf-⊩ᵛ∷ ⊩t
, λ ∇′⊇∇ σ₁≡σ₂ →
⊩η-unit
(wf-⊩≡∷ (⊩ᵛ∷⇔ʰ .proj₁ ⊩t .proj₂ ∇′⊇∇ σ₁≡σ₂) .proj₁)
(wf-⊩≡∷ (⊩ᵛ∷⇔ʰ .proj₁ ⊩u .proj₂ ∇′⊇∇ σ₁≡σ₂) .proj₂)
η
)
opaque
⊩unitrec≡unitrec :
∇ » Δ ∙ Unitʷ ⊢ A₁ ≡ A₂ →
∇ » Δ ∙ Unitʷ ⊩ᵛ⟨ l′ ⟩ A₁ ≡ A₂ →
∇ » Δ ⊩ᵛ⟨ l″ ⟩ t₁ ≡ t₂ ∷ Unitʷ →
∇ » Δ ⊩ᵛ⟨ l‴ ⟩ u₁ ≡ u₂ ∷ A₁ [ starʷ ]₀ →
⦃ inc : Var-included or-empty Η ⦄ →
∇ » Η ⊩ˢ σ₁ ≡ σ₂ ∷ Δ →
∇ » Η ⊩⟨ l′ ⟩ unitrec p q A₁ t₁ u₁ [ σ₁ ] ≡
unitrec p q A₂ t₂ u₂ [ σ₂ ] ∷ A₁ [ t₁ ]₀ [ σ₁ ]
⊩unitrec≡unitrec
{∇} {Δ} {A₁} {A₂} {l′} {t₁} {t₂} {u₁} {u₂} {Η} {σ₁} {σ₂} {p} {q}
⊢A₁≡A₂ A₁≡A₂ t₁≡t₂ u₁≡u₂ σ₁≡σ₂ =
let
⊩Γ = wf-⊩ᵛ (wf-⊩ᵛ∷ (wf-⊩ᵛ≡∷ t₁≡t₂ .proj₁))
(⊩A₁ , ⊩A₂) = wf-⊩ᵛ≡ A₁≡A₂
(⊩t₁ , ⊩t₂ , t₁≡t₂) = ⊩ᵛ≡∷⇔″ .proj₁ t₁≡t₂
(⊩u₁ , ⊩u₂ , u₁≡u₂) = ⊩ᵛ≡∷⇔″ .proj₁ u₁≡u₂
(⊩σ₁ , ⊩σ₂) = wf-⊩ˢ≡∷ σ₁≡σ₂
⊩Unit = ⊩ᵛ∷⇔ .proj₁ ⊩t₁ .proj₁
⊢Unit = R.escape-⊩ $ ⊩ᵛ→⊩ˢ∷→⊩[] ⊩Unit ⊩σ₁
A₁[σ₁⇑]≡A₂[σ₂⇑] = ⊩ᵛ≡→⊩ˢ≡∷→⊩[⇑]≡[⇑] A₁≡A₂ σ₁≡σ₂
in
case ⊩≡∷Unit⇔ .proj₁ (R.⊩≡∷⇔ .proj₁ (t₁≡t₂ id⊇ σ₁≡σ₂)) of λ {
(ok ,
Unitₜ₌ t₁′ t₂′ (t₁[σ₁]⇒*t₁′ , _) (t₂[σ₂]⇒*t₂′ , _) prop) →
let
⋆≡⋆ = refl-⊩ᵛ≡∷ (starᵛ ⊩Γ ok)
A₁[⋆]₀[σ₁]≡A₂[⋆]₀[σ₂] =
PE.subst₂ (_⊢_≡_ _) (substConsId {t = star!} A₁)
(substConsId {t = star!} A₂) $
≅-eq $ R.escape-⊩≡ $
⊩ᵛ≡→⊩ˢ≡∷→⊩≡∷→⊩[,]≡[,] A₁≡A₂ σ₁≡σ₂ $
⊩ᵛ≡∷→⊩ˢ≡∷→⊩[]≡[]∷ ⋆≡⋆ σ₁≡σ₂
⊢A₁[σ₁⇑]≡⊢A₂[σ₂⇑] =
subst-⊢≡ ⊢A₁≡A₂ $
⊢ˢʷ≡∷-⇑ (refl ⊢Unit) $ escape-⊩ˢ≡∷ σ₁≡σ₂ .proj₂
(⊢A₁[σ₁⇑] , ⊢A₂[σ₂⇑]) =
wf-⊢≡ ⊢A₁[σ₁⇑]≡⊢A₂[σ₂⇑]
⊩t₁[σ₁] = ⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩t₁ ⊩σ₁
⊩t₂[σ₂] = ⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩t₂ ⊩σ₂
⊢t₂[σ₂] = R.escape-⊩∷ ⊩t₂[σ₂]
⊢u₁[σ₁] =
R.escape-⊩∷ $
PE.subst (R._⊩⟨_⟩_∷_ _ _ _) (singleSubstLift A₁ starʷ) $
⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩u₁ ⊩σ₁
⊢u₂[σ₂] =
R.escape-⊩∷ $
R.conv-⊩∷
(⊩ᵛ≡→⊩ˢ≡∷→⊩≡∷→⊩[⇑][]₀≡[⇑][]₀ A₁≡A₂ (refl-⊩ˢ≡∷ ⊩σ₂)
(⊩ᵛ≡∷→⊩ˢ≡∷→⊩[]≡[]∷ ⋆≡⋆ (refl-⊩ˢ≡∷ ⊩σ₂))) $
PE.subst (R._⊩⟨_⟩_∷_ _ _ _) (singleSubstLift A₁ starʷ) $
⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩u₂ ⊩σ₂
in case prop of λ where
(Unitₜ₌ˢ η) →
case starᵛ (wf-⊩ᵛ ⊩Unit) ok of λ
⊩⋆ →
unitrec p q A₁ t₁ u₁ [ σ₁ ] ∷ A₁ [ t₁ ]₀ [ σ₁ ] ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (PE.sym $ singleSubstLift A₁ t₁) $
unitrec-β-η ⊢A₁[σ₁⇑] (R.escape-⊩∷ ⊩t₁[σ₁]) ⊢u₁[σ₁] ok
(Unit-with-η-𝕨→Unitʷ-η η) ⟩⊩∷∷
⟨ R.⊩≡⇔ .proj₁ $
⊩ᵛ≡→⊩≡∷→⊩ˢ≡∷→⊩[]₀[]≡[]₀[] (refl-⊩ᵛ≡ ⊩A₁)
(⊩ᵛ≡∷→⊩ˢ≡∷→⊩[]≡[]∷ (η-unitᵛ ⊩t₁ ⊩⋆ η) $
refl-⊩ˢ≡∷ ⊩σ₁)
(refl-⊩ˢ≡∷ ⊩σ₁) ⟩⊩∷
u₁ [ σ₁ ] ∷ A₁ [ starʷ ]₀ [ σ₁ ] ≡⟨ R.⊩≡∷⇔ .proj₁ (u₁≡u₂ id⊇ σ₁≡σ₂) ⟩⊩∷∷⇐*
⟨ A₁[⋆]₀[σ₁]≡A₂[⋆]₀[σ₂] ⟩⇒
∷ A₂ [ starʷ ]₀ [ σ₂ ] ⟨ singleSubstLift A₂ starʷ ⟩⇐≡
u₂ [ σ₂ ] ∷ A₂ [ σ₂ ⇑ ] [ starʷ [ σ₂ ] ]₀ ⇐⟨ conv
(unitrec-β-η ⊢A₂[σ₂⇑] ⊢t₂[σ₂] ⊢u₂[σ₂] ok
(Unit-with-η-𝕨→Unitʷ-η η))
(≅-eq $ R.escape-⊩≡ $
⊩ᵛ≡→⊩ˢ≡∷→⊩≡∷→⊩[⇑][]₀≡[⇑][]₀ (refl-⊩ᵛ≡ ⊩A₂) (refl-⊩ˢ≡∷ ⊩σ₂) $
⊩ᵛ≡∷→⊩ˢ≡∷→⊩[]≡[]∷ (η-unitᵛ ⊩t₂ ⊩⋆ η) $
refl-⊩ˢ≡∷ ⊩σ₂)
⟩∎∷
unitrec p q A₂ t₂ u₂ [ σ₂ ] ∎
(Unitₜ₌ʷ rest no-η) →
let
unitrec⇒*₁ =
PE.subst (_⊢_⇒*_∷_ _ _ _) (PE.sym $ singleSubstLift A₁ t₁) $
unitrec-subst* {p = p} {q = q} t₁[σ₁]⇒*t₁′ ⊢A₁[σ₁⇑] ⊢u₁[σ₁] no-η
unitrec⇒*₂ =
PE.subst (_⊢_⇒*_∷_ _ _ _) (PE.sym $ singleSubstLift A₂ t₂) $
unitrec-subst* {p = p} {q = q} t₂[σ₂]⇒*t₂′ ⊢A₂[σ₂⇑] ⊢u₂[σ₂] no-η
A₁[t₁]₀[σ₁]≡A₁[σ₁⇑][t₁′]₀ =
PE.subst₂ (_⊩⟨_⟩_≡_ _ _) (PE.sym $ singleSubstLift A₁ t₁) PE.refl $
R.⊩≡→ $
⊩ᵛ≡→⊩ˢ≡∷→⊩≡∷→⊩[⇑][]₀≡[⇑][]₀ (refl-⊩ᵛ≡ ⊩A₁) (refl-⊩ˢ≡∷ ⊩σ₁)
(R.→⊩≡∷ $ ⊩∷-⇒* t₁[σ₁]⇒*t₁′ $ R.⊩∷→ ⊩t₁[σ₁])
⊢A₂[t₂]₀[σ₂]≡A₂[σ₂⇑][t₂′]₀ =
≅-eq $ escape-⊩≡ $
PE.subst₂ (_⊩⟨_⟩_≡_ _ _) (PE.sym $ singleSubstLift A₂ t₂) PE.refl $
R.⊩≡→ $
⊩ᵛ≡→⊩ˢ≡∷→⊩≡∷→⊩[⇑][]₀≡[⇑][]₀ (refl-⊩ᵛ≡ ⊩A₂) (refl-⊩ˢ≡∷ ⊩σ₂)
(R.→⊩≡∷ $ ⊩∷-⇒* t₂[σ₂]⇒*t₂′ $ R.⊩∷→ ⊩t₂[σ₂])
in case rest of λ where
starᵣ →
unitrec p q A₁ t₁ u₁ [ σ₁ ] ∷ A₁ [ t₁ ]₀ [ σ₁ ] ⇒*⟨ unitrec⇒*₁ ⟩⊩∷∷
⟨ A₁[t₁]₀[σ₁]≡A₁[σ₁⇑][t₁′]₀ ⟩⊩∷
unitrec p q A₁ starʷ u₁ [ σ₁ ] ∷ A₁ [ σ₁ ⇑ ] [ starʷ ]₀ ⇒⟨ unitrec-β ⊢A₁[σ₁⇑] ⊢u₁[σ₁] ok no-η ⟩⊩∷∷
˘⟨ singleSubstLift A₁ starʷ ⟩⊩∷≡
u₁ [ σ₁ ] ∷ A₁ [ starʷ ]₀ [ σ₁ ] ≡⟨ R.⊩≡∷→ $ u₁≡u₂ id⊇ σ₁≡σ₂ ⟩⊩∷∷⇐*
⟨ A₁[⋆]₀[σ₁]≡A₂[⋆]₀[σ₂] ⟩⇒
∷ A₂ [ starʷ ]₀ [ σ₂ ] ⟨ singleSubstLift A₂ starʷ ⟩⇐≡
u₂ [ σ₂ ] ∷ A₂ [ σ₂ ⇑ ] [ starʷ ]₀
⇐⟨ unitrec-β ⊢A₂[σ₂⇑] ⊢u₂[σ₂] ok no-η ⟩∷
∷ A₂ [ σ₂ ⇑ ] [ starʷ ]₀ ˘⟨ ⊢A₂[t₂]₀[σ₂]≡A₂[σ₂⇑][t₂′]₀ ⟩⇒
unitrec p q A₂ starʷ u₂ [ σ₂ ] ∷ A₂ [ t₂ ]₀ [ σ₂ ] ⇐*⟨ unitrec⇒*₂ ⟩∎∷
unitrec p q A₂ t₂ u₂ [ σ₂ ] ∎
(ne (neNfₜ₌ t₁′-ne t₂′-ne t₁′~t₂′)) →
∇ » Η ⊩⟨ l′ ⟩
unitrec p q (A₁ [ σ₁ ⇑ ]) (t₁ [ σ₁ ]) (u₁ [ σ₁ ]) ≡
unitrec p q (A₂ [ σ₂ ⇑ ]) (t₂ [ σ₂ ]) (u₂ [ σ₂ ]) ∷
A₁ [ t₁ ]₀ [ σ₁ ] ∋
(unitrec p q A₁ t₁ u₁ [ σ₁ ]
∷ A₁ [ t₁ ]₀ [ σ₁ ] ⇒*⟨ unitrec⇒*₁ ⟩⊩∷∷
⟨ A₁[t₁]₀[σ₁]≡A₁[σ₁⇑][t₁′]₀ ⟩⊩∷
unitrec p q (A₁ [ σ₁ ⇑ ]) t₁′ (u₁ [ σ₁ ])
∷ A₁ [ σ₁ ⇑ ] [ t₁′ ]₀ ≡⟨ neutral-⊩≡∷ (wf-⊩≡ A₁[t₁]₀[σ₁]≡A₁[σ₁⇑][t₁′]₀ .proj₂)
(unitrecₙᵃ no-η t₁′-ne) (unitrecₙᵃ no-η t₂′-ne)
(~-unitrec
(with-inc-⊢≅ ⊢A₁[σ₁⇑]≡⊢A₂[σ₂⇑] $
escape-⊩≡ $
R.⊩≡→ ⦃ inc = included ⦄ A₁[σ₁⇑]≡A₂[σ₂⇑])
t₁′~t₂′
(PE.subst (_⊢_≅_∷_ _ _ _) (singleSubstLift A₁ _) $
escape-⊩≡∷ (R.⊩≡∷→ $ u₁≡u₂ id⊇ σ₁≡σ₂))
ok no-η) ⟩⊩∷∷⇐*
⟨ ≅-eq $ escape-⊩≡ $ R.⊩≡→ $
⊩ᵛ≡→⊩ˢ≡∷→⊩≡∷→⊩[⇑][]₀≡[⇑][]₀ A₁≡A₂ σ₁≡σ₂ $ R.→⊩≡∷ $
neutral-⊩≡∷ (R.⊩→ $ ⊩ᵛ→⊩ˢ∷→⊩[] ⊩Unit ⊩σ₁)
t₁′-ne t₂′-ne t₁′~t₂′ ⟩⇒
∷ A₂ [ σ₂ ⇑ ] [ t₂′ ]₀ ˘⟨ ⊢A₂[t₂]₀[σ₂]≡A₂[σ₂⇑][t₂′]₀ ⟩⇒
unitrec p q (A₂ [ σ₂ ⇑ ]) t₂′ (u₂ [ σ₂ ])
∷ A₂ [ t₂ ]₀ [ σ₂ ] ⇐*⟨ unitrec⇒*₂ ⟩∎∷
unitrec p q (A₂ [ σ₂ ⇑ ]) (t₂ [ σ₂ ]) (u₂ [ σ₂ ]) ∎) }
opaque
unitrec-congᵛ :
Γ »∙ Unitʷ ⊢ A₁ ≡ A₂ →
Γ »∙ Unitʷ ⊩ᵛ⟨ l′ ⟩ A₁ ≡ A₂ →
Γ ⊩ᵛ⟨ l″ ⟩ t₁ ≡ t₂ ∷ Unitʷ →
Γ ⊩ᵛ⟨ l‴ ⟩ u₁ ≡ u₂ ∷ A₁ [ starʷ ]₀ →
Γ ⊩ᵛ⟨ l′ ⟩ unitrec p q A₁ t₁ u₁ ≡ unitrec p q A₂ t₂ u₂ ∷
A₁ [ t₁ ]₀
unitrec-congᵛ ⊢A₁≡A₂ A₁≡A₂ t₁≡t₂ u₁≡u₂ =
⊩ᵛ≡∷⇔ʰ .proj₂
( ⊩ᵛ→⊩ᵛ∷→⊩ᵛ[]₀ (wf-⊩ᵛ≡ A₁≡A₂ .proj₁) (wf-⊩ᵛ≡∷ t₁≡t₂ .proj₁)
, λ ξ⊇ → ⊩unitrec≡unitrec (defn-wkEq ξ⊇ ⊢A₁≡A₂)
(defn-wk-⊩ᵛ≡ ξ⊇ A₁≡A₂)
(defn-wk-⊩ᵛ≡∷ ξ⊇ t₁≡t₂)
(defn-wk-⊩ᵛ≡∷ ξ⊇ u₁≡u₂)
)
opaque
unitrecᵛ :
Γ »∙ Unitʷ ⊢ A →
Γ »∙ Unitʷ ⊩ᵛ⟨ l′ ⟩ A →
Γ ⊩ᵛ⟨ l″ ⟩ t ∷ Unitʷ →
Γ ⊩ᵛ⟨ l‴ ⟩ u ∷ A [ starʷ ]₀ →
Γ ⊩ᵛ⟨ l′ ⟩ unitrec p q A t u ∷ A [ t ]₀
unitrecᵛ ⊢A ⊩A ⊩t ⊩u =
⊩ᵛ∷⇔⊩ᵛ≡∷ .proj₂ $
unitrec-congᵛ (refl ⊢A) (refl-⊩ᵛ≡ ⊩A) (refl-⊩ᵛ≡∷ ⊩t) (refl-⊩ᵛ≡∷ ⊩u)
opaque
unitrec-βᵛ :
Γ »∙ Unitʷ ⊢ A →
Γ »∙ Unitʷ ⊩ᵛ⟨ l″ ⟩ A →
Γ ⊩ᵛ⟨ l′ ⟩ t ∷ A [ starʷ ]₀ →
¬ Unitʷ-η →
Γ ⊩ᵛ⟨ l′ ⟩ unitrec p q A starʷ t ≡ t ∷ A [ starʷ ]₀
unitrec-βᵛ {A} ⊢A ⊩A ⊩t no-η =
⊩ᵛ∷-⇐
(λ ξ⊇ ⊩σ →
let ⊢A = defn-wk ξ⊇ ⊢A
⊢Unit = ⊢∙→⊢ (wf ⊢A)
⊩t = defn-wk-⊩ᵛ∷ ξ⊇ ⊩t
in
PE.subst (_⊢_⇒_∷_ _ _ _) (PE.sym $ singleSubstLift A _) $
unitrec-β
(subst-⊢ ⊢A (⊢ˢʷ∷-⇑′ ⊢Unit (escape-⊩ˢ∷ ⊩σ .proj₂)))
(PE.subst (_⊢_∷_ _ _) (singleSubstLift A _) $
R.escape-⊩∷ (⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩t ⊩σ))
(inversion-Unit ⊢Unit) no-η)
⊩t
opaque
unitrec-β-ηᵛ :
Γ »∙ Unitʷ ⊢ A →
Γ »∙ Unitʷ ⊩ᵛ⟨ l′ ⟩ A →
Γ ⊩ᵛ⟨ l″ ⟩ t ∷ Unitʷ →
Γ ⊩ᵛ⟨ l‴ ⟩ u ∷ A [ starʷ ]₀ →
Unitʷ-η →
Γ ⊩ᵛ⟨ l′ ⟩ unitrec p q A t u ≡ u ∷ A [ t ]₀
unitrec-β-ηᵛ {A} ⊢A ⊩A ⊩t ⊩u η =
let ⊢Unit = ⊢∙→⊢ (wf ⊢A)
ok = inversion-Unit ⊢Unit
in
⊩ᵛ∷-⇐
(λ ξ⊇ ⊩σ →
let ⊢A = defn-wk ξ⊇ ⊢A
⊢Unit = defn-wk ξ⊇ ⊢Unit
⊩t = defn-wk-⊩ᵛ∷ ξ⊇ ⊩t
⊩u = defn-wk-⊩ᵛ∷ ξ⊇ ⊩u
in
PE.subst (_⊢_⇒_∷_ _ _ _) (PE.sym $ singleSubstLift A _) $
unitrec-β-η
(subst-⊢ ⊢A (⊢ˢʷ∷-⇑′ ⊢Unit (escape-⊩ˢ∷ ⊩σ .proj₂)))
(R.escape-⊩∷ (⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩t ⊩σ))
(PE.subst (_⊢_∷_ _ _) (singleSubstLift A _) $
R.escape-⊩∷ (⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩u ⊩σ))
ok η)
(conv-⊩ᵛ∷
(⊩ᵛ≡→⊩ᵛ≡∷→⊩ᵛ[]₀≡[]₀ (refl-⊩ᵛ≡ ⊩A) $
η-unitᵛ (starᵛ (wf-⊩ᵛ (wf-⊩ᵛ∷ ⊩t)) ok) ⊩t (inj₂ η))
⊩u)