open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typed.Properties.Admissible.Var
  {ℓ} {M : Set ℓ}
  {𝕄 : Modality M}
  (R : Type-restrictions 𝕄)
  where
open import Definition.Typed R
open import Definition.Untyped M
open import Tools.Fin
private variable
  Γ           : Con Term _
  A B C D E F : Term _
opaque
  
  var₀ : Γ ⊢ A → Γ ∙ A ⊢ var x0 ∷ wk1 A
  var₀ ⊢A = var (∙ ⊢A) here
opaque
  
  var₁ : Γ ∙ A ⊢ B → Γ ∙ A ∙ B ⊢ var x1 ∷ wk1 (wk1 A)
  var₁ ⊢B = var (∙ ⊢B) (there here)
opaque
  
  var₂ : Γ ∙ A ∙ B ⊢ C → Γ ∙ A ∙ B ∙ C ⊢ var x2 ∷ wk1 (wk1 (wk1 A))
  var₂ ⊢C = var (∙ ⊢C) (there (there here))
opaque
  
  var₃ :
    Γ ∙ A ∙ B ∙ C ⊢ D →
    Γ ∙ A ∙ B ∙ C ∙ D ⊢ var x3 ∷ wk1 (wk1 (wk1 (wk1 A)))
  var₃ ⊢D = var (∙ ⊢D) (there (there (there here)))
opaque
  
  var₄ :
    Γ ∙ A ∙ B ∙ C ∙ D ⊢ E →
    Γ ∙ A ∙ B ∙ C ∙ D ∙ E ⊢ var x4 ∷ wk1 (wk1 (wk1 (wk1 (wk1 A))))
  var₄ ⊢E = var (∙ ⊢E) (there (there (there (there here))))
opaque
  
  var₅ :
    Γ ∙ A ∙ B ∙ C ∙ D ∙ E ⊢ F →
    Γ ∙ A ∙ B ∙ C ∙ D ∙ E ∙ F ⊢ var x5 ∷
      wk1 (wk1 (wk1 (wk1 (wk1 (wk1 A)))))
  var₅ ⊢F = var (∙ ⊢F) (there (there (there (there (there here)))))