import Graded.Modality
module Graded.Context.Properties.Natrec
{a} {M : Set a}
(open Graded.Modality M)
(𝕄 : Modality)
(open Modality 𝕄)
where
open import Graded.Context 𝕄
open import Graded.Context.Properties.Equivalence 𝕄
open import Graded.Modality.Nr-instances
open import Graded.Modality.Properties.Natrec semiring-with-meet
open import Tools.Fin
open import Tools.Nat using (Nat; 1+; Sequence)
open import Tools.PropositionalEquality
import Tools.Reasoning.PropositionalEquality as RP
import Tools.Reasoning.Equivalence as RE
private variable
m i : Nat
x : Fin _
n p q r s z : M
γ γ₁ γ₂ δ δ₁ δ₂ η η₁ η₂ : Conₘ _
module _ ⦃ has-nr : Has-nr semiring-with-meet ⦄ where
nrᶜ-cong :
γ₁ ≈ᶜ γ₂ → δ₁ ≈ᶜ δ₂ → η₁ ≈ᶜ η₂ →
nrᶜ p r γ₁ δ₁ η₁ ≈ᶜ nrᶜ p r γ₂ δ₂ η₂
nrᶜ-cong
{γ₁ = ε} {γ₂ = ε} {δ₁ = ε} {δ₂ = ε} {η₁ = ε} {η₂ = ε} _ _ _ =
ε
nrᶜ-cong
{γ₁ = _ ∙ z₁} {γ₂ = _ ∙ z₂} {δ₁ = _ ∙ s₁} {δ₂ = _ ∙ s₂}
{η₁ = _ ∙ n₁} {η₂ = _ ∙ n₂} {p = p} {r = r}
(p₁ ∙ p₂) (q₁ ∙ q₂) (r₁ ∙ r₂) =
nrᶜ-cong p₁ q₁ r₁ ∙
(nr p r z₁ s₁ n₁ ≡⟨ cong₂ (nr _ _ _) q₂ r₂ ⟩
nr p r z₁ s₂ n₂ ≡⟨ cong (λ z → nr _ _ z _ _) p₂ ⟩
nr p r z₂ s₂ n₂ ∎)
where
open RP
nrᶜ-monotone :
γ₁ ≤ᶜ γ₂ → δ₁ ≤ᶜ δ₂ → η₁ ≤ᶜ η₂ →
nrᶜ p r γ₁ δ₁ η₁ ≤ᶜ nrᶜ p r γ₂ δ₂ η₂
nrᶜ-monotone
{γ₁ = ε} {γ₂ = ε} {δ₁ = ε} {δ₂ = ε} {η₁ = ε} {η₂ = ε} _ _ _ =
ε
nrᶜ-monotone
{γ₁ = _ ∙ _} {γ₂ = _ ∙ _} {δ₁ = _ ∙ _} {δ₂ = _ ∙ _}
{η₁ = _ ∙ _} {η₂ = _ ∙ _}
(p₁ ∙ p₂) (q₁ ∙ q₂) (r₁ ∙ r₂) =
nrᶜ-monotone p₁ q₁ r₁ ∙ nr-monotone p₂ q₂ r₂
nrᶜ-·ᶜ : nr p r z s n ·ᶜ γ ≤ᶜ nrᶜ p r (z ·ᶜ γ) (s ·ᶜ γ) (n ·ᶜ γ)
nrᶜ-·ᶜ {γ = ε} = ε
nrᶜ-·ᶜ {γ = _ ∙ _} = nrᶜ-·ᶜ ∙ nr-·
nrᶜ-+ᶜ :
nrᶜ p r γ₁ δ₁ η₁ +ᶜ nrᶜ p r γ₂ δ₂ η₂ ≤ᶜ
nrᶜ p r (γ₁ +ᶜ γ₂) (δ₁ +ᶜ δ₂) (η₁ +ᶜ η₂)
nrᶜ-+ᶜ
{γ₁ = ε} {δ₁ = ε} {η₁ = ε} {γ₂ = ε} {δ₂ = ε} {η₂ = ε} =
ε
nrᶜ-+ᶜ
{γ₁ = _ ∙ _} {δ₁ = _ ∙ _} {η₁ = _ ∙ _}
{γ₂ = _ ∙ _} {δ₂ = _ ∙ _} {η₂ = _ ∙ _} =
nrᶜ-+ᶜ ∙ nr-+
nrᶜ-𝟘ᶜ : nrᶜ p r 𝟘ᶜ 𝟘ᶜ 𝟘ᶜ ≈ᶜ 𝟘ᶜ {n = m}
nrᶜ-𝟘ᶜ {m = 0} = ε
nrᶜ-𝟘ᶜ {m = 1+ _} = nrᶜ-𝟘ᶜ ∙ nr-𝟘
nrᶜ-zero : η ≤ᶜ 𝟘ᶜ → nrᶜ p r γ δ η ≤ᶜ γ
nrᶜ-zero {η = ε} {γ = ε} {δ = ε} _ = ε
nrᶜ-zero {η = _ ∙ _} {γ = _ ∙ _} {δ = _ ∙ _} (p₁ ∙ p₂) =
nrᶜ-zero p₁ ∙ nr-zero p₂
nrᶜ-suc : nrᶜ p r γ δ η ≤ᶜ δ +ᶜ p ·ᶜ η +ᶜ r ·ᶜ nrᶜ p r γ δ η
nrᶜ-suc {γ = ε} {δ = ε} {η = ε} = ε
nrᶜ-suc {γ = _ ∙ _} {δ = _ ∙ _} {η = _ ∙ _} = nrᶜ-suc ∙ nr-suc
nrᶜ-decreasing :
(∀ z s n → nr p r z s n ≤ n) →
nrᶜ p r γ δ η ≤ᶜ η
nrᶜ-decreasing {γ = ε} {δ = ε} {η = ε} _ = ε
nrᶜ-decreasing {γ = _ ∙ _} {δ = _ ∙ _} {η = _ ∙ _} nr-decreasing =
nrᶜ-decreasing nr-decreasing ∙ nr-decreasing _ _ _
nrᶜ-,≔ :
nrᶜ p r (γ , x ≔ z) (δ , x ≔ s) (η , x ≔ n) ≈ᶜ
nrᶜ p r γ δ η , x ≔ nr p r z s n
nrᶜ-,≔ {γ = ε} {x = ()}
nrᶜ-,≔ {γ = _ ∙ _} {x = x0} {δ = _ ∙ _} {η = _ ∙ _} = ≈ᶜ-refl
nrᶜ-,≔ {γ = _ ∙ _} {x = _ +1} {δ = _ ∙ _} {η = _ ∙ _} =
nrᶜ-,≔ ∙ refl
nrᶜ-⟨⟩ :
(γ : Conₘ m) →
nrᶜ p r γ δ η ⟨ x ⟩ ≡ nr p r (γ ⟨ x ⟩) (δ ⟨ x ⟩) (η ⟨ x ⟩)
nrᶜ-⟨⟩ {δ = ε} {x = ()}
nrᶜ-⟨⟩ {δ = _ ∙ _} {η = _ ∙ _} {x = x0} (_ ∙ _) = refl
nrᶜ-⟨⟩ {δ = _ ∙ _} {η = _ ∙ _} {x = _ +1} (γ ∙ _) = nrᶜ-⟨⟩ γ
opaque
nrᶜ-linearity-like-for-𝟘 :
Linearity-like-nr-for-𝟘 →
nrᶜ p 𝟘 γ δ η ≈ᶜ ((𝟙 ∧ p) ·ᶜ η +ᶜ δ) ∧ᶜ (η +ᶜ γ)
nrᶜ-linearity-like-for-𝟘 {γ = ε} {δ = ε} {η = ε} _ = ε
nrᶜ-linearity-like-for-𝟘 {γ = _ ∙ _} {δ = _ ∙ _} {η = _ ∙ _} hyp =
nrᶜ-linearity-like-for-𝟘 hyp ∙ hyp
opaque
nrᶜ-linearity-like-for-𝟙 :
Linearity-like-nr-for-𝟙 →
nrᶜ p 𝟙 γ δ η ≈ᶜ (𝟙 + p) ·ᶜ η +ᶜ ω ·ᶜ δ +ᶜ γ
nrᶜ-linearity-like-for-𝟙 {γ = ε} {δ = ε} {η = ε} _ = ε
nrᶜ-linearity-like-for-𝟙 {γ = _ ∙ _} {δ = _ ∙ _} {η = _ ∙ _} hyp =
nrᶜ-linearity-like-for-𝟙 hyp ∙ hyp
module _
⦃ has-nr : Has-nr semiring-with-meet ⦄
⦃ is-factoring-nr : Is-factoring-nr has-nr ⦄ where
opaque
nrᶜ-factoring : nrᶜ p r γ δ η ≈ᶜ nr₂ p r ·ᶜ η +ᶜ nrᶜ p r γ δ 𝟘ᶜ
nrᶜ-factoring {γ = ε} {(ε)} {(ε)} = ε
nrᶜ-factoring {γ = _ ∙ _} {_ ∙ _} {_ ∙ _} =
nrᶜ-factoring ∙ nr-factoring
nrᵢᶜ : ∀ {n} → M → Conₘ n → Conₘ n → Sequence (Conₘ n)
nrᵢᶜ r ε ε i = ε
nrᵢᶜ r (γ ∙ p) (δ ∙ q) i =
nrᵢᶜ r γ δ i ∙ nrᵢ r p q i
opaque
nrᵢᶜ-cong : γ₁ ≈ᶜ γ₂ → δ₁ ≈ᶜ δ₂ → nrᵢᶜ r γ₁ δ₁ i ≈ᶜ nrᵢᶜ r γ₂ δ₂ i
nrᵢᶜ-cong ε ε = ε
nrᵢᶜ-cong (γ≈γ′ ∙ refl) (δ≈δ′ ∙ refl) =
nrᵢᶜ-cong γ≈γ′ δ≈δ′ ∙ refl
opaque
nrᵢᶜ-𝟘ᶜ : ∀ {n i} → nrᵢᶜ {n} r 𝟘ᶜ 𝟘ᶜ i ≈ᶜ 𝟘ᶜ
nrᵢᶜ-𝟘ᶜ {n = 0} = ε
nrᵢᶜ-𝟘ᶜ {n = 1+ n} {i} =
nrᵢᶜ-𝟘ᶜ ∙ nrᵢ-𝟘 i
opaque
nrᵢᶜ-monotone : γ₁ ≤ᶜ γ₂ → δ₁ ≤ᶜ δ₂ → nrᵢᶜ r γ₁ δ₁ i ≤ᶜ nrᵢᶜ r γ₂ δ₂ i
nrᵢᶜ-monotone {γ₁ = ε} {(ε)} {(ε)} {(ε)} _ _ = ε
nrᵢᶜ-monotone {γ₁ = _ ∙ _} {(_ ∙ _)} {(_ ∙ _)} {(_ ∙ _)} {i}
(γ≤ ∙ p≤) (δ≤ ∙ q≤) = nrᵢᶜ-monotone γ≤ δ≤ ∙ nrᵢ-monotone i p≤ q≤
opaque
nrᵢᶜ-zero : nrᵢᶜ r γ δ 0 ≈ᶜ γ
nrᵢᶜ-zero {γ = ε} {(ε)} = ε
nrᵢᶜ-zero {γ = γ ∙ p} {δ ∙ q} = nrᵢᶜ-zero ∙ refl
opaque
nrᵢᶜ-suc : nrᵢᶜ r γ δ (1+ i) ≈ᶜ δ +ᶜ r ·ᶜ nrᵢᶜ r γ δ i
nrᵢᶜ-suc {γ = ε} {(ε)} = ε
nrᵢᶜ-suc {γ = γ ∙ p} {δ ∙ q} =
nrᵢᶜ-suc ∙ refl
opaque
nrᵢᶜ-+ᶜ : nrᵢᶜ r (γ₁ +ᶜ γ₂) (δ₁ +ᶜ δ₂) i ≈ᶜ nrᵢᶜ r γ₁ δ₁ i +ᶜ nrᵢᶜ r γ₂ δ₂ i
nrᵢᶜ-+ᶜ {(r)} {γ₁ = ε} {(ε)} {(ε)} {(ε)} {(i)} = ε
nrᵢᶜ-+ᶜ {(r)} {γ₁ = _ ∙ _} {_ ∙ _} {_ ∙ _} {_ ∙ _} {(i)} =
nrᵢᶜ-+ᶜ ∙ nrᵢ-+ i
opaque
·ᶜ-distribʳ-nrᵢᶜ : nrᵢ r p q i ·ᶜ γ ≈ᶜ nrᵢᶜ r (p ·ᶜ γ) (q ·ᶜ γ) i
·ᶜ-distribʳ-nrᵢᶜ {γ = ε} = ε
·ᶜ-distribʳ-nrᵢᶜ {i} {γ = γ ∙ p′} =
·ᶜ-distribʳ-nrᵢᶜ ∙ ·-distribʳ-nrᵢ i