------------------------------------------------------------------------
-- The natural numbers.
------------------------------------------------------------------------

module Tools.Nat where

-- We reexport Agda's built-in type of natural numbers.

open import Agda.Builtin.Nat using (Nat; _+_; _*_; _==_) public
open import Agda.Builtin.Nat using (zero; suc)
import Data.Fin as F
import Data.Fin.Properties as FP
open import Data.Nat.Base
open Data.Nat.Base public
  using (_≤_; _<_; pred; _⊔_; _⊓_; >-nonZero; nonZero; _∸_)
open _≤_ public
open import Data.Nat.DivMod
open Data.Nat.DivMod using (_/_; m/n*n≤m; m*n/n≡m) public
open import Data.Nat.Properties
open import Data.Nat using (_<′_; ≤′-refl; ≤′-step; _≤′_) public
open Data.Nat.Properties
  using (_≟_; _<?_; ≤-total;
         +-identityʳ; +-assoc; +-comm; +-0-isCommutativeMonoid; +-suc;
         +-cancelˡ-≡;
         *-identityˡ; *-identityʳ; *-assoc; *-comm; *-zeroʳ; *-cancelˡ-≡;
         *-suc; *-1-isCommutativeMonoid; +-*-isSemiring; ⊔-isSemilattice;
         m*n≡0⇒m≡0∨n≡0;
         ⊔-identityʳ; ⊔-assoc; ⊔-comm; ⊔-idem; m≥n⇒m⊔n≡m; m⊔n≡m⇒n≤m;
         ⊓-assoc; ⊓-comm;
         +-distribˡ-⊔; +-distribʳ-⊔; ∸-distribʳ-⊔;
         *-distribˡ-+; *-distribʳ-+; *-distribˡ-⊔; *-distribʳ-⊔;
         ⊓-distribʳ-⊔; ⊔-distribʳ-⊓;
         ⊔-absorbs-⊓; ⊓-absorbs-⊔;
         ≤-refl; ≤-reflexive; ≤-trans; ≤-antisym; module ≤-Reasoning;
         ≤-<-trans;
         n≮n; ≤∧≢⇒<; m<n⇒n≢0;
         ≤⇒pred≤;
         +-mono-≤; m≤m+n; m≤n+m; m+n≤o⇒n≤o; 0<1+n; n≤1+n;
         *-mono-≤; m≤m*n; m≤n*m; m+1+n≰m;
         m≤m⊔n; m≤n⊔m;
         m<n⊓o⇒m<n; m<n⊓o⇒m<o; ⊓-pres-m<;
         m⊓n≤m⊔n; m+n∸n≡m; m∸n+n≡m; ⊔-mono-<;
         <⇒<′; <′⇒<; ≤′⇒≤; ≤′-trans)
  renaming (suc-injective to 1+-injective;
            s≤′s to 1+≤′1+)
  public
open import Data.Nat.Show using (show) public
open import Relation.Binary using (Tri)
open Tri

open import Tools.Bool
open import Tools.Empty
open import Tools.Function
open import Tools.Level using (Level; lzero)
open import Tools.Product as Σ
open import Tools.PropositionalEquality
open import Tools.Relation
open import Tools.Sum as  using (_⊎_; inj₁; inj₂)

pattern 1+ n = suc n
pattern 2+ n = 1+ (1+ n)
pattern 3+ n = 1+ (2+ n)
pattern 4+ n = 1+ (3+ n)

private variable
  a             : Level
  k m m′ n n′ o : Nat
  p             : Nat  Bool

-- Nat is a set.

Nat-set : Is-set Nat
Nat-set {x = zero}  {y = zero}  {x = refl} {y = refl} = refl
Nat-set {x = zero}  {y = suc _} {x = ()}
Nat-set {x = suc _} {y = zero}  {x = ()}
Nat-set {x = suc m} {y = suc n} {x = p}    {y = q}    =
                                                   $⟨ Nat-set {x = m} {y = n} 
  cong pred p  cong pred q                        →⟨ cong (cong suc) 
  cong suc (cong pred p)  cong suc (cong pred q)  →⟨  hyp  trans (sym (lemma _)) (trans hyp (lemma _))) 
  p  q                                            
  where
  lemma : (p : suc m  suc n)  cong suc (cong pred p)  p
  lemma refl = refl

-- The inequality m ⊓ n ≤ o holds if and only if either m ≤ o or n ≤ o
-- holds.

⊓≤⇔≤⊎≤ : m  n  o  (m  o  n  o)
⊓≤⇔≤⊎≤ {m = m} {n = n} {o = o} =
     m⊓n≤o 
       case ≤-total m n of λ where
         (inj₁ m≤n)  inj₁ $ begin
           m      ≤⟨ ⊓-glb ≤-refl m≤n 
           m  n  ≤⟨ m⊓n≤o 
           o      
         (inj₂ n≤m)  inj₂ $ begin
           n      ≤⟨ ⊓-glb n≤m ≤-refl 
           m  n  ≤⟨ m⊓n≤o 
           o      )
  ,  where
       (inj₁ m≤o)  begin
         m  n  ≤⟨ m⊓n≤m _ _ 
         m      ≤⟨ m≤o 
         o      
       (inj₂ n≤o)  begin
         m  n  ≤⟨ m⊓n≤n _ _ 
         n      ≤⟨ n≤o 
         o      )
  where
  open ≤-Reasoning

-- The inequality m ≤ n ⊔ o holds if and only if either m ≤ n or m ≤ o
-- holds.

≤⊔⇔≤⊎≤ : m  n  o  (m  n  m  o)
≤⊔⇔≤⊎≤ {m = m} {n = n} {o = o} =
     m≤n⊔o 
       case ≤-total n o of λ where
         (inj₁ n≤o)  inj₂ $ begin
           m      ≤⟨ m≤n⊔o 
           n  o  ≤⟨ ⊔-lub n≤o ≤-refl 
           o      
         (inj₂ o≤n)  inj₁ $ begin
           m      ≤⟨ m≤n⊔o 
           n  o  ≤⟨ ⊔-lub ≤-refl o≤n 
           n      )
  ,  where
       (inj₁ m≤n)  begin
         m      ≤⟨ m≤n 
         n      ≤⟨ m≤m⊔n _ _ 
         n  o  
       (inj₂ m≤o)  begin
         m      ≤⟨ m≤o 
         o      ≤⟨ m≤n⊔m _ _ 
         n  o  )
  where
  open ≤-Reasoning

-- If m * n ≡ 1+ o, then 0 < m and 0 < n.

*≡1+→0< : m * n  1+ o  0 < m × 0 < n
*≡1+→0< {m = 0}                       = λ ()
*≡1+→0< {m = 1+ _} {n = 1+ _}         = λ _  s≤s z≤n , s≤s z≤n
*≡1+→0< {m = 1+ m} {n = 0}    {o = o} =
  m * 0  1+ o      →⟨ trans (sym (*-zeroʳ m)) 
  0  1+ o          →⟨  ()) 
  0 < 1+ m × 0 < 0  

private

  -- If 1+ m * n ≤ k + 1+ m * o for some k ≤ m, then
  -- 1+ m * n ≤ 1+ m * o.

  1+*≤+1+*→1+*≤1+* :
    k  m 
    1+ m * n  k + 1+ m * o 
    1+ m * n  1+ m * o
  1+*≤+1+*→1+*≤1+* {m = m} {n = 0} {o = o} _ _ =
                         $⟨ _≤_.z≤n 
    0  1+ m * o         ≡⟨ cong (_≤ 1+ m * o) (sym (*-zeroʳ m)) ⟩→
    1+ m * 0  1+ m * o  
  1+*≤+1+*→1+*≤1+* {k = k} {m = m} {n = 1+ n} {o = 0} k≤m =
    1+ m * 1+ n  k + m * 0  ≡⟨ cong₂ _≤_ (*-comm (1+ m) (1+ n)) (cong (k +_) (*-zeroʳ m)) ⟩→
    1+ n * 1+ m  k + 0      ≡⟨ cong (_ ≤_) (+-identityʳ _) ⟩→
    1+ n * 1+ m  k          →⟨ idᶠ 
    1+ m + n * 1+ m  k      →⟨ m+n≤o⇒m≤o _ 
    m < k                    →⟨ flip ≤-trans k≤m 
    m < m                    →⟨ <-irrefl refl 
                            →⟨ ⊥-elim 
    1+ m * 1+ n  m * 0      
  1+*≤+1+*→1+*≤1+* {k = k} {m = m} {n = 1+ n} {o = 1+ o} k≤m =
    1+ m * 1+ n  k + 1+ m * 1+ o            ≡⟨ cong₂ _≤_ (*-suc (1+ m) _) (cong (k +_) (*-suc (1+ m) _)) ⟩→
    1+ m + 1+ m * n  k + (1+ m + 1+ m * o)  ≡⟨ cong (1+ m + 1+ m * n ≤_) $
                                                trans (sym (+-assoc k (1+ m) _)) $
                                                trans (cong (_+ 1+ m * o) (+-comm k _)) $
                                                +-assoc (1+ m) _ _ ⟩→
    1+ m + 1+ m * n  1+ m + (k + 1+ m * o)  →⟨ +-cancelˡ-≤ (1+ m) (n + m * n) (k + (o + m * o)) 
    1+ m * n  k + 1+ m * o                  →⟨ 1+*≤+1+*→1+*≤1+* k≤m 
    1+ m * n  1+ m * o                      →⟨ +-mono-≤ (≤-refl {x = 1+ m}) 
    1+ m + 1+ m * n  1+ m + 1+ m * o        ≡⟨ sym $ cong₂ _≤_ (*-suc (1+ m) _) (*-suc (1+ m) _) ⟩→
    1+ m * 1+ n  1+ m * 1+ o                

-- If 1+ m * n ≤ o, then n ≤ o / 1+ m.

*≤→≤/ : 1+ m * n  o  n  o / 1+ m
*≤→≤/ {m = m} {n = n} {o = o} = helper (o divMod 1+ m)
  where
  helper :
    (d : DivMod o (1+ m)) 
    1+ m * n  o  n  d .DivMod.quotient
  helper (record { quotient = q; remainder = r; property = refl }) =
    1+ m * n  F.toℕ r + q * 1+ m  ≡⟨ cong  o  1+ m * n  F.toℕ r + o) (*-comm q _) ⟩→
    1+ m * n  F.toℕ r + 1+ m * q  →⟨ 1+*≤+1+*→1+*≤1+* (FP.toℕ≤pred[n] r) 
    1+ m * n  1+ m * q            →⟨ *-cancelˡ-≤ (1+ m) 
    n  q                          

-- T (m == n) is logically equivalent to m ≡ n.

T-== : T (m == n)  m  n
T-== = ≡ᵇ⇒≡ _ _ , ≡⇒≡ᵇ _ _

-- ∃< n p is true if there is some m < n such that p m holds.

∃< : Nat  (Nat  Bool)  Bool
∃< 0      p = false
∃< (1+ n) p = p n  ∃< n p

-- ∃< is correctly defined.

∃<⇔ : T (∃< n p)  ( λ m  m < n × T (p m))
∃<⇔ {n = 0} {p = p} =
                            ⇔⟨ (⊥-elim , λ { (_ , () , _) }) 
  ( λ m  m < 0 × T (p m))  □⇔
∃<⇔ {n = 1+ n} {p = p} =
  T (p n  ∃< n p)                     ⇔⟨ T-∨ 
  T (p n)  T (∃< n p)                 ⇔⟨ id⇔ ⊎-cong-⇔ ∃<⇔ 
  T (p n)  ( λ m  m < n × T (p m))  ⇔⟨  where
                                             (inj₁ p-n)              n , ≤-refl , p-n
                                             (inj₂ (m , m<n , p-m))  m , ≤-trans m<n (n≤1+n _) , p-m)
                                        ,  (m , m<1+n , p-m) 
                                             case <-cmp m n of λ where
                                               (tri< m<n _    _)    inj₂ (m , m<n , p-m)
                                               (tri≈ _   refl _)    inj₁ p-m
                                               (tri> _   _    m>n)  ⊥-elim (m+n≮n _ _ (≤-trans m<1+n m>n)))
                                        
  ( λ m  m < 1+ n × T (p m))         □⇔

-- ∃≤ n p is true if there is some m ≤ n such that p m holds.

∃≤ : Nat  (Nat  Bool)  Bool
∃≤ n = ∃< (1+ n)

-- ∃≤ is correctly defined.

∃≤⇔ : T (∃≤ n p)  ( λ m  m  n × T (p m))
∃≤⇔ {n = n} {p = p} =
  T (∃≤ n p)                    ⇔⟨ id⇔ 
  T (∃< (1+ n) p)               ⇔⟨ ∃<⇔ 
  ( λ m  m < 1+ n × T (p m))  ⇔⟨ (Σ-cong-⇔ λ _  ((λ { (s≤s m≤n)  m≤n }) , s≤s) ×-cong-⇔ id⇔) 
  ( λ m  m  n × T (p m))     □⇔

-- ∃-least P means that there is a least number n for which P n holds.

∃-least : (  Set a)  Set a
∃-least P =  λ n  P n ×  m  m < n  ¬ P m

-- A decidable predicate holds for some number if and only if there is
-- a least number for which it holds.

∃⇔∃-least : ( λ n  T (p n))  ∃-least  n  T (p n))
∃⇔∃-least = (uncurry λ _  ∃→∃-least) , Σ.map idᶠ proj₁
  where
  ∃→∃-least : T (p n)  ∃-least  n  T (p n))
  ∃→∃-least {n = 0} ok =
    0 , ok , λ _ ()
  ∃→∃-least {p = p} {n = 1+ n} ok = lemma _ refl
    where
    lemma :
       b  b  p 0 
       λ n  T (p n) ×  m  m < n  ¬ T (p m)
    lemma true  eq = 0 , subst T eq _ , λ _ ()
    lemma false eq =
      case ∃→∃-least {p = p ∘→ 1+} ok of λ {
        (n , ok , least) 
        1+ n
      , ok
      ,  where
           0 _ 
             T (p 0)  →⟨ subst T (sym eq) 
                     
           (1+ m) 1+m<1+n 
             T (p (1+ m))  →⟨ least m (+-cancelˡ-< 1 m n 1+m<1+n) 
                          ) }

-- Is-proposition is closed under ∃-least (assuming function
-- extensionality).

∃-least-propositional :
   {p} {P :   Set p} 
  Function-extensionality lzero p 
  Function-extensionality p lzero 
  (∀ n  Is-proposition (P n)) 
  Is-proposition (∃-least P)
∃-least-propositional
  fe₁ fe₂ P-prop
  {x = n₁ , p₁ , least₁}
  {y = n₂ , p₂ , least₂} =
  case n₁≡n₂ of λ {
    refl 
  cong₂  p least  _ , p , least)
    (P-prop _)
    (Is-proposition-Π fe₁ λ _ 
     Is-proposition-Π fe₁ λ _ 
     Is-proposition-Π fe₂ λ _ 
     ⊥-propositional) }
  where
  n₁≡n₂ : n₁  n₂
  n₁≡n₂ = case <-cmp n₁ n₂ of λ where
    (tri< n₁<n₂ _     _)      ⊥-elim (least₂ _ n₁<n₂ p₁)
    (tri≈ _     n₁≡n₂ _)      n₁≡n₂
    (tri> _     _     n₁>n₂)  ⊥-elim (least₁ _ n₁>n₂ p₂)

opaque

  -- The relation _<′_ is transitive.

  <′-trans : m <′ n  n <′ o  m <′ o
  <′-trans p q = ≤⇒≤′ (<-trans (<′⇒< p) (<′⇒< q))

opaque

  -- The relation _<′_ is contained in _≤′_.

  <′→≤′ : m <′ n  m ≤′ n
  <′→≤′ = ≤⇒≤′ ∘→ <⇒≤ ∘→ <′⇒<

opaque

  -- Zero is the least natural number.

  0≤′ : 0 ≤′ n
  0≤′ = ≤⇒≤′ z≤n

opaque

  -- The number m is bounded by the maximum of m and n.

  ≤′⊔ʳ : m ≤′ m  n
  ≤′⊔ʳ = ≤⇒≤′ (m≤m⊔n _ _)

opaque

  -- The number n is bounded by the maximum of m and n.

  ≤′⊔ˡ : n ≤′ m  n
  ≤′⊔ˡ = ≤⇒≤′ (m≤n⊔m _ _)

opaque

  -- The function _⊔_ is monotone.

  ⊔-mono : m ≤′ m′  n ≤′ n′  m  n ≤′ m′  n′
  ⊔-mono p q = ≤⇒≤′ (⊔-mono-≤ (≤′⇒≤ p) (≤′⇒≤ q))

opaque

  -- "Reflexivity" of _==_

  ==-refl :  n  (n == n)  true
  ==-refl 0 = refl
  ==-refl (1+ n) = ==-refl n

opaque

  -- "Symmetry" of _==_

  ==-sym :  m n  (m == n)  (n == m)
  ==-sym zero zero = refl
  ==-sym zero (1+ n) = refl
  ==-sym (1+ m) zero = refl
  ==-sym (1+ m) (1+ n) = ==-sym m n

opaque

  -- If m < n then n == m ≡ false

  <⇒¬== : m < n  (n == m)  false
  <⇒¬==            {n = 0}    ()
  <⇒¬== {m = 0}    {n = 1+ _} m<n       = refl
  <⇒¬== {m = 1+ _} {n = 1+ _} (s≤s m<n) = <⇒¬== m<n

opaque

  -- A "preservation" property for _==_ under subtraction

  <⇒==∸ : k  m  k  n  (m == n)  (m  k == n  k)
  <⇒==∸ {(zero)} k<m k<n = refl
  <⇒==∸ {1+ k} (s≤s k<m) (s≤s k<n) = <⇒==∸ k<m k<n

-- Infinite sequences of elements of a given type as functions from Nat

Sequence : (A : Set a)  Set a
Sequence A = Nat  A

opaque

  -- Multiplication respects greatest lower bounds of sequences
  -- of natural numbers

  *-LUB :
    (nᵢ : Sequence Nat) 
    (∀ i  nᵢ i  n) 
    (∀ m  (∀ i  nᵢ i  m)  n  m) 
    (∀ i  k * nᵢ i  k * n) ×
    (∀ m  (∀ i  k * nᵢ i  m)  k * n  m)
  *-LUB {n} {k = 0} nᵢ ≤n n-lub =
     _  ≤-refl) ,  _ _  z≤n)
  *-LUB {n} {k = 1+ k} nᵢ ≤n n-lub =
     i  *-monoʳ-≤ (1+ k) (≤n i)) ,
    λ m ≤m 
      let nᵢ≤ :  i  nᵢ i  m / (1+ k)
          nᵢ≤ i = begin
            nᵢ i                   ≡˘⟨ m*n/n≡m (nᵢ i) (1+ k) 
            nᵢ i * (1+ k) / (1+ k) ≡⟨ /-congˡ (*-comm (nᵢ i) (1+ k)) 
            (1+ k) * nᵢ i / (1+ k) ≤⟨ /-monoˡ-≤ (1+ k) (≤m i) 
            m / 1+ k 
      in  begin
            (1+ k) * n            ≤⟨ *-monoʳ-≤ (1+ k) (n-lub _ nᵢ≤) 
            (1+ k) * (m / 1+ k)   ≡⟨ *-comm (1+ k) (m / 1+ k) 
            (m / (1+ k)) * (1+ k) ≤⟨ m/n*n≤m m (1+ k) 
            m 
    where
    open ≤-Reasoning

opaque

  -- Addition respects greatest lower bounds of sequences
  -- of natural numbers

  +-LUB :
    (nᵢ : Sequence Nat) 
    (∀ i  nᵢ i  n) 
    (∀ m  (∀ i  nᵢ i  m)  n  m) 
    (∀ i  k + nᵢ i  k + n) ×
    (∀ m  (∀ i  k + nᵢ i  m)  k + n  m)
  +-LUB {n} {k} nᵢ ≤n n-lub =
     i  +-monoʳ-≤ k (≤n i)) ,
    λ m ≤m 
      let nᵢ≤ :  i  nᵢ i  m  k
          nᵢ≤ i = begin
            nᵢ i         ≡˘⟨ m+n∸m≡n k (nᵢ i) 
            k + nᵢ i  k ≤⟨ ∸-monoˡ-≤ k (≤m i) 
            m  k        
      in  begin
            k + n       ≤⟨ +-monoʳ-≤ k (n-lub _ nᵢ≤) 
            k + (m  k) ≡⟨ m+[n∸m]≡n (m+n≤o⇒m≤o k (≤m 0)) 
            m           
    where
    open ≤-Reasoning

opaque

  -- Non-zero numbers are at least 1

  1≤n : n  0  1  n
  1≤n {(zero)} n≢0 = ⊥-elim (n≢0 refl)
  1≤n {1+ n} n≢0 = s≤s z≤n