open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typed.Properties
{ℓ} {M : Set ℓ}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
where
open import Definition.Untyped M
open import Definition.Typed R
open import Tools.Fin
open import Tools.PropositionalEquality
open import Definition.Typed.Properties.Admissible.Bool R public
open import Definition.Typed.Properties.Admissible.Empty R public
open import Definition.Typed.Properties.Admissible.Equality R public
open import Definition.Typed.Properties.Admissible.Erased R public
open import Definition.Typed.Properties.Admissible.Identity R public
open import Definition.Typed.Properties.Admissible.Lift R public
open import Definition.Typed.Properties.Admissible.Nat R public
open import Definition.Typed.Properties.Admissible.Non-dependent R
public
open import Definition.Typed.Properties.Admissible.Pi R public
open import Definition.Typed.Properties.Admissible.Sigma R public
open import Definition.Typed.Properties.Admissible.Unit R public
open import Definition.Typed.Properties.Admissible.Var R public
open import Definition.Typed.Properties.Reduction R public
open import Definition.Typed.Properties.Well-formed R public
private variable
x : Fin _
Γ : Con Term _
A B : Term _
opaque
det∈ : x ∷ A ∈ Γ → x ∷ B ∈ Γ → A ≡ B
det∈ here here = refl
det∈ (there x) (there y) = cong wk1 (det∈ x y)