------------------------------------------------------------------------
-- Admissible rules related to Π
------------------------------------------------------------------------

open import Definition.Typed.Restrictions
open import Graded.Modality

module Definition.Typed.Properties.Admissible.Pi
  {} {M : Set }
  {𝕄 : Modality M}
  (R : Type-restrictions 𝕄)
  where

open Type-restrictions R

open import Definition.Untyped M
open import Definition.Untyped.Properties M

open import Definition.Typed R
open import Definition.Typed.Inversion.Primitive R
open import Definition.Typed.Properties.Reduction R
open import Definition.Typed.Reasoning.Reduction R
open import Definition.Typed.Substitution.Primitive R
import Definition.Typed.Substitution.Primitive.Primitive R as S
open import Definition.Typed.Well-formed R

open import Tools.Fin
open import Tools.Function
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Reasoning.PropositionalEquality

private variable
  Γ                            : Con Term _
  A B C D E t t′ u u₁ u₂ u₃ u₄ : Term _
  p p₁ p₂ p₃ p₄ q q₁ q₂ q₃ q₄  : M

opaque

  -- A variant of lamⱼ.

  lamⱼ′ :
    Π-allowed p q 
    Γ  A  t  B 
    Γ  lam p t  Π p , q  A  B
  lamⱼ′ ok ⊢t = lamⱼ (wf-⊢∷ ⊢t) ⊢t ok

opaque

  -- Lambdas preserve definitional equality.

  lam-cong :
    Γ  A  t  u  B 
    Π-allowed p q 
    Γ  lam p t  lam p u  Π p , q  A  B
  lam-cong t≡u =
    let ⊢B , ⊢t , ⊢u = wf-⊢≡∷ t≡u in
    S.lam-cong ⊢B ⊢t ⊢u t≡u

opaque

  -- A variant of η-eq.

  η-eq′ :
    Γ  t  Π p , q  A  B 
    Γ  u  Π p , q  A  B 
    Γ  A  wk1 t ∘⟨ p  var x0  wk1 u ∘⟨ p  var x0  B 
    Γ  t  u  Π p , q  A  B
  η-eq′ ⊢t ⊢u t0≡u0 =
    let _ , ⊢B , ok = inversion-ΠΣ (wf-⊢∷ ⊢t) in
    η-eq ⊢B ⊢t ⊢u t0≡u0 ok

opaque

  -- A variant of app-subst for _⊢_⇒*_∷_.

  app-subst* :
    Γ  t ⇒* t′  Π p , q  A  B 
    Γ  u  A 
    Γ  t ∘⟨ p  u ⇒* t′ ∘⟨ p  u  B [ u ]₀
  app-subst* (id ⊢t)        ⊢u = id (⊢t ∘ⱼ ⊢u)
  app-subst* (t⇒t′  t′⇒t″) ⊢u = app-subst t⇒t′ ⊢u  app-subst* t′⇒t″ ⊢u

opaque

  -- A variant of the reduction rule β-red.

  β-red-⇒ :
    Γ  A  t  B 
    Γ  u  A 
    Π-allowed p q 
    Γ  lam p t ∘⟨ p  u  t [ u ]₀  B [ u ]₀
  β-red-⇒ ⊢t ⊢u =
    β-red (wf-⊢∷ ⊢t) ⊢t ⊢u PE.refl

opaque

  -- A variant of the equality rule β-red.

  β-red-≡ :
    Γ  A  t  B 
    Γ  u  A 
    Π-allowed p q 
    Γ  lam p t ∘⟨ p  u  t [ u ]₀  B [ u ]₀
  β-red-≡ ⊢t ⊢u ok =
    subsetTerm (β-red-⇒ ⊢t ⊢u ok)

opaque

  -- A variant of β-red-⇒.
  --
  -- See also Definition.Typed.Consequences.Admissible.Pi.β-red-⇒₂.

  β-red-⇒₂′ :
    Π-allowed p₁ q₁ 
    Π-allowed p₂ q₂ 
    Γ  A  B  t  C 
    Γ  u₁  A 
    Γ  u₂  B [ u₁ ]₀ 
    Γ  lam p₁ (lam p₂ t) ∘⟨ p₁  u₁ ∘⟨ p₂  u₂ ⇒* t [ u₁ , u₂ ]₁₀ 
      C [ u₁ , u₂ ]₁₀
  β-red-⇒₂′ {p₁} {p₂} {t} {C} {u₁} {u₂} ok₁ ok₂ ⊢t ⊢u₁ ⊢u₂ =
    lam p₁ (lam p₂ t) ∘⟨ p₁  u₁ ∘⟨ p₂  u₂  ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ C) $
                                                app-subst (β-red-⇒ (lamⱼ′ ok₂ ⊢t) ⊢u₁ ok₁) ⊢u₂ 
    lam p₂ (t [ sgSubst u₁  ]) ∘⟨ p₂  u₂   ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ C) $
                                                β-red-⇒ (subst-⊢∷-⇑ ⊢t (⊢ˢʷ∷-sgSubst ⊢u₁)) ⊢u₂ ok₂ ⟩∎≡
    t [ sgSubst u₁  ] [ u₂ ]₀               ≡⟨ singleSubstComp _ _ t 
    t [ u₁ , u₂ ]₁₀                          

opaque

  -- A variant of β-red-⇒.
  --
  -- See also Definition.Typed.Consequences.Admissible.Pi.β-red-⇒₃.

  β-red-⇒₃′ :
    Π-allowed p₁ q₁ 
    Π-allowed p₂ q₂ 
    Π-allowed p₃ q₃ 
    Γ  A  B  C  t  D 
    Γ  u₁  A 
    Γ  u₂  B [ u₁ ]₀ 
    Γ  u₃  C [ u₁ , u₂ ]₁₀ 
    Γ  lam p₁ (lam p₂ (lam p₃ t)) ∘⟨ p₁  u₁ ∘⟨ p₂  u₂ ∘⟨ p₃  u₃ ⇒*
        t [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ] 
        D [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ]
  β-red-⇒₃′
    {p₁} {p₂} {p₃} {t} {D} {u₁} {u₂} {u₃}
    ok₁ ok₂ ok₃ ⊢t ⊢u₁ ⊢u₂ ⊢u₃ =
    lam p₁ (lam p₂ (lam p₃ t)) ∘⟨ p₁  u₁ ∘⟨ p₂  u₂ ∘⟨ p₃  u₃  ⇒*⟨ PE.subst (_⊢_⇒*_∷_ _ _ _) (singleSubstComp _ _ D) $
                                                                     app-subst* (β-red-⇒₂′ ok₁ ok₂ (lamⱼ′ ok₃ ⊢t) ⊢u₁ ⊢u₂) ⊢u₃ 
    lam p₃ (t [ consSubst (sgSubst u₁) u₂  ]) ∘⟨ p₃  u₃        ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ D) $
                                                                    β-red-⇒ (subst-⊢∷-⇑ ⊢t (→⊢ˢʷ∷∙ (⊢ˢʷ∷-sgSubst ⊢u₁) ⊢u₂)) ⊢u₃ ok₃ ⟩∎≡
    t [ consSubst (sgSubst u₁) u₂  ] [ u₃ ]₀                    ≡⟨ singleSubstComp _ _ t 
    t [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ]               

opaque

  -- A variant of β-red-⇒.
  --
  -- See also Definition.Typed.Consequences.Admissible.Pi.β-red-⇒₄.

  β-red-⇒₄′ :
    Π-allowed p₁ q₁ 
    Π-allowed p₂ q₂ 
    Π-allowed p₃ q₃ 
    Π-allowed p₄ q₄ 
    Γ  A  B  C  D  t  E 
    Γ  u₁  A 
    Γ  u₂  B [ u₁ ]₀ 
    Γ  u₃  C [ u₁ , u₂ ]₁₀ 
    Γ  u₄  D [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ] 
    Γ 
      lam p₁ (lam p₂ (lam p₃ (lam p₄ t)))
        ∘⟨ p₁  u₁ ∘⟨ p₂  u₂ ∘⟨ p₃  u₃ ∘⟨ p₄  u₄ ⇒*
      t [ consSubst (consSubst (consSubst (sgSubst u₁) u₂) u₃) u₄ ] 
      E [ consSubst (consSubst (consSubst (sgSubst u₁) u₂) u₃) u₄ ]
  β-red-⇒₄′
    {p₁} {p₂} {p₃} {p₄} {t} {E} {u₁} {u₂} {u₃} {u₄}
    ok₁ ok₂ ok₃ ok₄ ⊢t ⊢u₁ ⊢u₂ ⊢u₃ ⊢u₄ =
    lam p₁ (lam p₂ (lam p₃ (lam p₄ t))) ∘⟨ p₁  u₁ ∘⟨ p₂  u₂ ∘⟨ p₃  u₃
      ∘⟨ p₄  u₄                                                          ⇒*⟨ PE.subst (_⊢_⇒*_∷_ _ _ _) (singleSubstComp _ _ E) $
                                                                              app-subst* (β-red-⇒₃′ ok₁ ok₂ ok₃ (lamⱼ′ ok₄ ⊢t) ⊢u₁ ⊢u₂ ⊢u₃) ⊢u₄ 
    lam p₄ (t [ consSubst (consSubst (sgSubst u₁) u₂) u₃  ]) ∘⟨ p₄  u₄  ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ E) $
                                                                             β-red-⇒ (subst-⊢∷-⇑ ⊢t (→⊢ˢʷ∷∙ (→⊢ˢʷ∷∙ (⊢ˢʷ∷-sgSubst ⊢u₁) ⊢u₂) ⊢u₃))
                                                                               ⊢u₄ ok₄ ⟩∎≡
    t [ consSubst (consSubst (sgSubst u₁) u₂) u₃  ] [ u₄ ]₀              ≡⟨ singleSubstComp _ _ t 
    t [ consSubst (consSubst (consSubst (sgSubst u₁) u₂) u₃) u₄ ]