open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typed.Properties.Admissible.Pi
{ℓ} {M : Set ℓ}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
where
open Type-restrictions R
open import Definition.Untyped M
open import Definition.Untyped.Properties M
open import Definition.Typed R
open import Definition.Typed.Inversion.Primitive R
open import Definition.Typed.Properties.Reduction R
open import Definition.Typed.Reasoning.Reduction R
open import Definition.Typed.Substitution.Primitive R
import Definition.Typed.Substitution.Primitive.Primitive R as S
open import Definition.Typed.Well-formed R
open import Tools.Fin
open import Tools.Function
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Reasoning.PropositionalEquality
private variable
Γ : Con Term _
A B C D E t t′ u u₁ u₂ u₃ u₄ : Term _
p p₁ p₂ p₃ p₄ q q₁ q₂ q₃ q₄ : M
opaque
lamⱼ′ :
Π-allowed p q →
Γ ∙ A ⊢ t ∷ B →
Γ ⊢ lam p t ∷ Π p , q ▷ A ▹ B
lamⱼ′ ok ⊢t = lamⱼ (wf-⊢∷ ⊢t) ⊢t ok
opaque
lam-cong :
Γ ∙ A ⊢ t ≡ u ∷ B →
Π-allowed p q →
Γ ⊢ lam p t ≡ lam p u ∷ Π p , q ▷ A ▹ B
lam-cong t≡u =
let ⊢B , ⊢t , ⊢u = wf-⊢≡∷ t≡u in
S.lam-cong ⊢B ⊢t ⊢u t≡u
opaque
η-eq′ :
Γ ⊢ t ∷ Π p , q ▷ A ▹ B →
Γ ⊢ u ∷ Π p , q ▷ A ▹ B →
Γ ∙ A ⊢ wk1 t ∘⟨ p ⟩ var x0 ≡ wk1 u ∘⟨ p ⟩ var x0 ∷ B →
Γ ⊢ t ≡ u ∷ Π p , q ▷ A ▹ B
η-eq′ ⊢t ⊢u t0≡u0 =
let _ , ⊢B , ok = inversion-ΠΣ (wf-⊢∷ ⊢t) in
η-eq ⊢B ⊢t ⊢u t0≡u0 ok
opaque
app-subst* :
Γ ⊢ t ⇒* t′ ∷ Π p , q ▷ A ▹ B →
Γ ⊢ u ∷ A →
Γ ⊢ t ∘⟨ p ⟩ u ⇒* t′ ∘⟨ p ⟩ u ∷ B [ u ]₀
app-subst* (id ⊢t) ⊢u = id (⊢t ∘ⱼ ⊢u)
app-subst* (t⇒t′ ⇨ t′⇒t″) ⊢u = app-subst t⇒t′ ⊢u ⇨ app-subst* t′⇒t″ ⊢u
opaque
β-red-⇒ :
Γ ∙ A ⊢ t ∷ B →
Γ ⊢ u ∷ A →
Π-allowed p q →
Γ ⊢ lam p t ∘⟨ p ⟩ u ⇒ t [ u ]₀ ∷ B [ u ]₀
β-red-⇒ ⊢t ⊢u =
β-red (wf-⊢∷ ⊢t) ⊢t ⊢u PE.refl
opaque
β-red-≡ :
Γ ∙ A ⊢ t ∷ B →
Γ ⊢ u ∷ A →
Π-allowed p q →
Γ ⊢ lam p t ∘⟨ p ⟩ u ≡ t [ u ]₀ ∷ B [ u ]₀
β-red-≡ ⊢t ⊢u ok =
subsetTerm (β-red-⇒ ⊢t ⊢u ok)
opaque
β-red-⇒₂′ :
Π-allowed p₁ q₁ →
Π-allowed p₂ q₂ →
Γ ∙ A ∙ B ⊢ t ∷ C →
Γ ⊢ u₁ ∷ A →
Γ ⊢ u₂ ∷ B [ u₁ ]₀ →
Γ ⊢ lam p₁ (lam p₂ t) ∘⟨ p₁ ⟩ u₁ ∘⟨ p₂ ⟩ u₂ ⇒* t [ u₁ , u₂ ]₁₀ ∷
C [ u₁ , u₂ ]₁₀
β-red-⇒₂′ {p₁} {p₂} {t} {C} {u₁} {u₂} ok₁ ok₂ ⊢t ⊢u₁ ⊢u₂ =
lam p₁ (lam p₂ t) ∘⟨ p₁ ⟩ u₁ ∘⟨ p₂ ⟩ u₂ ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ C) $
app-subst (β-red-⇒ (lamⱼ′ ok₂ ⊢t) ⊢u₁ ok₁) ⊢u₂ ⟩
lam p₂ (t [ sgSubst u₁ ⇑ ]) ∘⟨ p₂ ⟩ u₂ ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ C) $
β-red-⇒ (subst-⊢∷-⇑ ⊢t (⊢ˢʷ∷-sgSubst ⊢u₁)) ⊢u₂ ok₂ ⟩∎≡
t [ sgSubst u₁ ⇑ ] [ u₂ ]₀ ≡⟨ singleSubstComp _ _ t ⟩
t [ u₁ , u₂ ]₁₀ ∎
opaque
β-red-⇒₃′ :
Π-allowed p₁ q₁ →
Π-allowed p₂ q₂ →
Π-allowed p₃ q₃ →
Γ ∙ A ∙ B ∙ C ⊢ t ∷ D →
Γ ⊢ u₁ ∷ A →
Γ ⊢ u₂ ∷ B [ u₁ ]₀ →
Γ ⊢ u₃ ∷ C [ u₁ , u₂ ]₁₀ →
Γ ⊢ lam p₁ (lam p₂ (lam p₃ t)) ∘⟨ p₁ ⟩ u₁ ∘⟨ p₂ ⟩ u₂ ∘⟨ p₃ ⟩ u₃ ⇒*
t [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ] ∷
D [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ]
β-red-⇒₃′
{p₁} {p₂} {p₃} {t} {D} {u₁} {u₂} {u₃}
ok₁ ok₂ ok₃ ⊢t ⊢u₁ ⊢u₂ ⊢u₃ =
lam p₁ (lam p₂ (lam p₃ t)) ∘⟨ p₁ ⟩ u₁ ∘⟨ p₂ ⟩ u₂ ∘⟨ p₃ ⟩ u₃ ⇒*⟨ PE.subst (_⊢_⇒*_∷_ _ _ _) (singleSubstComp _ _ D) $
app-subst* (β-red-⇒₂′ ok₁ ok₂ (lamⱼ′ ok₃ ⊢t) ⊢u₁ ⊢u₂) ⊢u₃ ⟩
lam p₃ (t [ consSubst (sgSubst u₁) u₂ ⇑ ]) ∘⟨ p₃ ⟩ u₃ ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ D) $
β-red-⇒ (subst-⊢∷-⇑ ⊢t (→⊢ˢʷ∷∙ (⊢ˢʷ∷-sgSubst ⊢u₁) ⊢u₂)) ⊢u₃ ok₃ ⟩∎≡
t [ consSubst (sgSubst u₁) u₂ ⇑ ] [ u₃ ]₀ ≡⟨ singleSubstComp _ _ t ⟩
t [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ] ∎
opaque
β-red-⇒₄′ :
Π-allowed p₁ q₁ →
Π-allowed p₂ q₂ →
Π-allowed p₃ q₃ →
Π-allowed p₄ q₄ →
Γ ∙ A ∙ B ∙ C ∙ D ⊢ t ∷ E →
Γ ⊢ u₁ ∷ A →
Γ ⊢ u₂ ∷ B [ u₁ ]₀ →
Γ ⊢ u₃ ∷ C [ u₁ , u₂ ]₁₀ →
Γ ⊢ u₄ ∷ D [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ] →
Γ ⊢
lam p₁ (lam p₂ (lam p₃ (lam p₄ t)))
∘⟨ p₁ ⟩ u₁ ∘⟨ p₂ ⟩ u₂ ∘⟨ p₃ ⟩ u₃ ∘⟨ p₄ ⟩ u₄ ⇒*
t [ consSubst (consSubst (consSubst (sgSubst u₁) u₂) u₃) u₄ ] ∷
E [ consSubst (consSubst (consSubst (sgSubst u₁) u₂) u₃) u₄ ]
β-red-⇒₄′
{p₁} {p₂} {p₃} {p₄} {t} {E} {u₁} {u₂} {u₃} {u₄}
ok₁ ok₂ ok₃ ok₄ ⊢t ⊢u₁ ⊢u₂ ⊢u₃ ⊢u₄ =
lam p₁ (lam p₂ (lam p₃ (lam p₄ t))) ∘⟨ p₁ ⟩ u₁ ∘⟨ p₂ ⟩ u₂ ∘⟨ p₃ ⟩ u₃
∘⟨ p₄ ⟩ u₄ ⇒*⟨ PE.subst (_⊢_⇒*_∷_ _ _ _) (singleSubstComp _ _ E) $
app-subst* (β-red-⇒₃′ ok₁ ok₂ ok₃ (lamⱼ′ ok₄ ⊢t) ⊢u₁ ⊢u₂ ⊢u₃) ⊢u₄ ⟩
lam p₄ (t [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ⇑ ]) ∘⟨ p₄ ⟩ u₄ ⇒⟨ PE.subst (_⊢_⇒_∷_ _ _ _) (singleSubstComp _ _ E) $
β-red-⇒ (subst-⊢∷-⇑ ⊢t (→⊢ˢʷ∷∙ (→⊢ˢʷ∷∙ (⊢ˢʷ∷-sgSubst ⊢u₁) ⊢u₂) ⊢u₃))
⊢u₄ ok₄ ⟩∎≡
t [ consSubst (consSubst (sgSubst u₁) u₂) u₃ ⇑ ] [ u₄ ]₀ ≡⟨ singleSubstComp _ _ t ⟩
t [ consSubst (consSubst (consSubst (sgSubst u₁) u₂) u₃) u₄ ] ∎