open import Tools.Level
open import Definition.Typed.Restrictions
import Graded.Modality.Instances.Affine
open import Graded.Modality.Variant lzero
open import Graded.Usage.Restrictions
module Graded.Modality.Instances.Affine.Bad
(variant : Modality-variant)
(open Graded.Modality.Instances.Affine variant)
(TR : Type-restrictions affineModality)
(open Type-restrictions TR)
(UR : Usage-restrictions affineModality)
(Π-𝟙-𝟘 : Π-allowed 𝟙 𝟘)
where
open import Graded.Restrictions affineModality
open import Graded.Modality Affine
open import Graded.Usage.Restrictions.Natrec affineModality
private
module M = Modality affineModality
UR′ = nr-available-UR zero-one-many-greatest-star-nr UR
open Usage-restrictions UR′
instance
has-nr : Nr-available
has-nr = Natrec-mode-has-nr.Nr ⦃ zero-one-many-greatest-star-nr ⦄
open import Tools.Function
import Tools.Reasoning.PartialOrder
open import Graded.Context affineModality
open import Graded.Context.Properties affineModality
open import Graded.Modality.Instances.Examples TR Π-𝟙-𝟘
open import Graded.Mode affineModality
open import Graded.Usage affineModality UR′
▸double : ε ▸[ 𝟙ᵐ ] double
▸double =
lamₘ $
natrecₘ var (sucₘ var) var $
sub ℕₘ $ begin
𝟘ᶜ ∙ ⌜ 𝟘ᵐ? ⌝ · 𝟘 ≈⟨ ≈ᶜ-refl ∙ M.·-zeroʳ _ ⟩
𝟘ᶜ ∎
where
open Tools.Reasoning.PartialOrder ≤ᶜ-poset
▸plus : ε ▸[ 𝟙ᵐ ] plus
▸plus =
lamₘ $
lamₘ $
natrecₘ var (sucₘ var) var $
sub ℕₘ $ begin
𝟘ᶜ ∙ ⌜ 𝟘ᵐ? ⌝ · 𝟘 ≈⟨ ≈ᶜ-refl ∙ M.·-zeroʳ _ ⟩
𝟘ᶜ ∎
where
open Tools.Reasoning.PartialOrder ≤ᶜ-poset