open import Tools.Level
open import Definition.Typed.Restrictions
import Graded.Modality.Instances.Affine
open import Graded.Modality.Variant lzero
open import Graded.Usage.Restrictions
module Graded.Modality.Instances.Affine.Good
(variant : Modality-variant)
(open Graded.Modality.Instances.Affine variant)
(TR : Type-restrictions affineModality)
(open Type-restrictions TR)
(UR : Usage-restrictions affineModality)
(Π-𝟙-𝟘 : Π-allowed 𝟙 𝟘)
where
open import Graded.Restrictions affineModality
open import Graded.Usage.Restrictions.Natrec affineModality
open import Graded.Modality Affine
private
UR′ = nr-available-UR zero-one-many-has-nr UR
open Usage-restrictions UR′
instance
has-nr : Nr-available
has-nr = Natrec-mode-has-nr.Nr ⦃ zero-one-many-has-nr ⦄
open import Tools.Function
import Tools.Reasoning.PartialOrder
open import Tools.Product
open import Tools.Relation
open import Graded.Context affineModality
open import Graded.Context.Properties affineModality
open import Graded.Modality.Instances.Examples TR Π-𝟙-𝟘
open import Graded.Modality.Properties affineModality
open import Graded.Mode affineModality
open import Graded.Usage affineModality UR′
open import Graded.Usage.Inversion affineModality UR′
private
module M = Modality affineModality
¬▸double : ¬ ε ▸[ 𝟙ᵐ ] double
¬▸double ▸λ+ =
case inv-usage-lam ▸λ+ of λ {
(invUsageLam {δ = ε} ▸+ ε) →
case inv-usage-natrec-has-nr ▸+ of λ {
(_ ∙ p , _ ∙ q , _ ∙ r , _
, ▸x0₁ , _ , ▸x0₂ , _ , _ ∙ 𝟙≤nr) →
case inv-usage-var ▸x0₁ of λ {
(_ ∙ p≤𝟙) →
case inv-usage-var ▸x0₂ of λ {
(_ ∙ r≤𝟙) →
case begin
𝟙 ≤⟨ 𝟙≤nr ⟩
𝟙 · r + ω · q + p ≤⟨ +-monotone (·-monotoneʳ {r = 𝟙} r≤𝟙) (+-monotoneʳ p≤𝟙) ⟩
𝟙 + ω · q + 𝟙 ≡⟨ M.+-congˡ {x = 𝟙} (M.+-comm (ω · q) _) ⟩
𝟙 + 𝟙 + ω · q ≡˘⟨ M.+-assoc 𝟙 𝟙 (ω · q) ⟩
ω ∎
of λ () }}}}
where
open Tools.Reasoning.PartialOrder ≤-poset
▸plus : ε ▸[ 𝟙ᵐ ] plus
▸plus =
lamₘ $
lamₘ $
natrecₘ var (sucₘ var) var $
sub ℕₘ $ begin
𝟘ᶜ ∙ ⌜ 𝟘ᵐ? ⌝ · 𝟘 ≈⟨ ≈ᶜ-refl ∙ M.·-zeroʳ _ ⟩
𝟘ᶜ ∎
where
open Tools.Reasoning.PartialOrder ≤ᶜ-poset