------------------------------------------------------------------------
-- Algorithmic equality.
------------------------------------------------------------------------

open import Definition.Typed.Restrictions
open import Graded.Modality

module Definition.Conversion
  {a} {M : Set a}
  {𝕄 : Modality M}
  (R : Type-restrictions 𝕄)
  where

open Type-restrictions R

open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Typed R

import Graded.Derived.Erased.Untyped 𝕄 as Erased

open import Tools.Fin
open import Tools.Function
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Relation
open import Tools.Sum


infix 10 _⊢_~_↑_
infix 10 _⊢_~_↓_
infix 10 _⊢_[conv↑]_
infix 10 _⊢_[conv↓]_
infix 10 _⊢_[conv↑]_∷_
infix 10 _⊢_[conv↓]_∷_

private
  variable
    n : Nat
    Γ : Con Term n
    A₁ A₂ B₁ B₂ C F H G E : Term n
    a₀ b₀ g h k l t t₁ t₂ u u₁ u₂ v v₁ v₂ w₁ w₂ : Term n
    x y : Fin n
    p p′ p″ p₁ p₂ q q′ q″ q₁ q₂ r r′ : M
    b : BinderMode
    s : Strength

mutual
  -- Neutral equality.
  data _⊢_~_↑_ (Γ : Con Term n) : (k l A : Term n)  Set a where

    var-refl      : Γ  var x  C
                   x PE.≡ y
                   Γ  var x ~ var y  C

    app-cong      : Γ  k ~ l  Π p , q  F  G
                   Γ  t [conv↑] v  F
                   Γ  k ∘⟨ p  t ~ l ∘⟨ p  v  G [ t ]₀

    fst-cong      : Γ  k ~ l  Σˢ p , q  F  G
                   Γ  fst p k ~ fst p l  F

    snd-cong      : Γ  k ~ l  Σˢ p , q  F  G
                   Γ  snd p k ~ snd p l  G [ fst p k ]₀

    natrec-cong   : Γ    F [conv↑] G
                   Γ  a₀ [conv↑] b₀  F [ zero ]₀
                   Γ    F  h [conv↑] g  F [ suc (var x1) ]↑²
                   Γ  k ~ l  
                   Γ  natrec p q r F a₀ h k ~ natrec p q r G b₀ g l  F [ k ]₀

    prodrec-cong  : Γ  (Σʷ p , q  F  G)  C [conv↑] E
                   Γ  g ~ h  Σʷ p , q  F  G
                   Γ  F  G  u [conv↑] v  C [ prodʷ p (var x1) (var x0) ]↑²
                   Γ  prodrec r p q′ C g u ~ prodrec r p q′ E h v  C [ g ]₀

    emptyrec-cong : Γ  F [conv↑] H
                   Γ  k ~ l  Empty
                   Γ  emptyrec p F k ~ emptyrec p H l  F

    unitrec-cong : Γ  Unitʷ  F [conv↑] H
                  Γ  k ~ l  Unitʷ
                  Γ  u [conv↑] v  F [ starʷ ]₀
                  ¬ Unitʷ-η
                  Γ  unitrec p q F k u ~ unitrec p q H l v  F [ k ]₀

    J-cong        : Γ  A₁ [conv↑] A₂
                   Γ  t₁ [conv↑] t₂  A₁
                   Γ  A₁  Id (wk1 A₁) (wk1 t₁) (var x0)  B₁ [conv↑] B₂
                   Γ  u₁ [conv↑] u₂  B₁ [ t₁ , rfl ]₁₀
                   Γ  v₁ [conv↑] v₂  A₁
                   Γ  w₁ ~ w₂  C
                   Γ  C  Id A₁ t₁ v₁
                   Γ  J p q A₁ t₁ B₁ u₁ v₁ w₁ ~
                        J p q A₂ t₂ B₂ u₂ v₂ w₂  B₁ [ v₁ , w₁ ]₁₀

    K-cong        : Γ  A₁ [conv↑] A₂
                   Γ  t₁ [conv↑] t₂  A₁
                   Γ  Id A₁ t₁ t₁  B₁ [conv↑] B₂
                   Γ  u₁ [conv↑] u₂  B₁ [ rfl ]₀
                   Γ  v₁ ~ v₂  C
                   Γ  C  Id A₁ t₁ t₁
                   K-allowed
                   Γ  K p A₁ t₁ B₁ u₁ v₁ ~ K p A₂ t₂ B₂ u₂ v₂ 
                      B₁ [ v₁ ]₀

    []-cong-cong  :  {B}
                   Γ  A₁ [conv↑] A₂
                   Γ  t₁ [conv↑] t₂  A₁
                   Γ  u₁ [conv↑] u₂  A₁
                   Γ  v₁ ~ v₂  B
                   Γ  B  Id A₁ t₁ u₁
                   []-cong-allowed s
                   let open Erased s in
                    Γ  []-cong s A₁ t₁ u₁ v₁ ~ []-cong s A₂ t₂ u₂ v₂ 
                      Id (Erased A₁) ([ t₁ ]) ([ u₁ ])

  -- Neutral equality with types in WHNF.
  record _⊢_~_↓_ (Γ : Con Term n) (k l B : Term n) : Set a where
    inductive
    constructor [~]
    field
      A   : Term n
      D   : Γ  A  B
      k~l : Γ  k ~ l  A

  -- Type equality.
  record _⊢_[conv↑]_ (Γ : Con Term n) (A B : Term n) : Set a where
    inductive
    constructor [↑]
    field
      A′ B′  : Term n
      D      : Γ  A  A′
      D′     : Γ  B  B′
      A′<>B′ : Γ  A′ [conv↓] B′

  -- Type equality with types in WHNF.
  data _⊢_[conv↓]_ (Γ : Con Term n) : (A B : Term n)  Set a where

    U-refl     :  Γ  Γ  U [conv↓] U

    ℕ-refl     :  Γ  Γ   [conv↓] 

    Empty-refl :  Γ  Γ  Empty [conv↓] Empty

    Unit-refl  :  Γ  Unit-allowed s  Γ  Unit s [conv↓] Unit s

    ne         :  {K L}
                Γ  K ~ L  U
                Γ  K [conv↓] L

    ΠΣ-cong    :  {F G H E}
                Γ  F
                Γ  F [conv↑] H
                Γ  F  G [conv↑] E
                ΠΣ-allowed b p q
                Γ  ΠΣ⟨ b  p , q  F  G [conv↓] ΠΣ⟨ b  p , q  H  E

    Id-cong    : Γ  A₁ [conv↑] A₂
                Γ  t₁ [conv↑] t₂  A₁
                Γ  u₁ [conv↑] u₂  A₁
                Γ  Id A₁ t₁ u₁ [conv↓] Id A₂ t₂ u₂

  -- Term equality.
  record _⊢_[conv↑]_∷_ (Γ : Con Term n) (t u A : Term n) : Set a where
    inductive
    constructor [↑]ₜ
    field
      B t′ u′ : Term n
      D       : Γ  A  B
      d       : Γ  t  t′  B
      d′      : Γ  u  u′  B
      t<>u    : Γ  t′ [conv↓] u′  B

  -- Term equality with types and terms in WHNF.
  data _⊢_[conv↓]_∷_ (Γ : Con Term n) : (t u A : Term n)  Set a where

    ℕ-ins     : Γ  k ~ l  
               Γ  k [conv↓] l  

    Empty-ins : Γ  k ~ l  Empty
               Γ  k [conv↓] l  Empty

    Unit-ins  : Γ  k ~ l  Unit s
               Γ  k [conv↓] l  Unit s

    Σʷ-ins    : Γ  k  Σʷ p , q  F  G
               Γ  l  Σʷ p , q  F  G
               Γ  k ~ l  Σʷ p′ , q′  H  E
               Γ  k [conv↓] l  Σʷ p , q  F  G

    ne-ins    :  {k l M N}
               Γ  k  N
               Γ  l  N
               Neutral N
               Γ  k ~ l  M
               Γ  k [conv↓] l  N

    univ      :  {A B}
               Γ  A  U
               Γ  B  U
               Γ  A [conv↓] B
               Γ  A [conv↓] B  U

    zero-refl :  Γ  Γ  zero [conv↓] zero  

    starʷ-refl :  Γ
                Unitʷ-allowed
                ¬ Unitʷ-η
                Γ  starʷ [conv↓] starʷ  Unitʷ

    suc-cong  :  {m n}
               Γ  m [conv↑] n  
               Γ  suc m [conv↓] suc n  

    prod-cong :  {F G t t′ u u′}
               Γ  F
               Γ  F  G
               Γ  t [conv↑] t′  F
               Γ  u [conv↑] u′  G [ t ]₀
               Σʷ-allowed p q
               Γ  prodʷ p t u [conv↓] prodʷ p t′ u′  Σʷ p , q  F  G

    η-eq      :  {f g F G}
               Γ  f  Π p , q  F  G
               Γ  g  Π p , q  F  G
               Function f
               Function g
               Γ  F  wk1 f ∘⟨ p  var x0 [conv↑] wk1 g ∘⟨ p  var x0  G
               Γ  f [conv↓] g  Π p , q  F  G

    Σ-η       : Γ  k  Σˢ p , q  F  G
               Γ  l  Σˢ p , q  F  G
               Product k
               Product l
               Γ  fst p k [conv↑] fst p l  F
               Γ  snd p k [conv↑] snd p l  G [ fst p k ]₀
               Γ  k [conv↓] l  Σˢ p , q  F  G

    η-unit    :  {k l}
               Γ  k  Unit s
               Γ  l  Unit s
               Whnf k
               Whnf l
               Unit-with-η s
               Γ  k [conv↓] l  Unit s

    Id-ins    :  {A A′ t′ u′}
               Γ  v₁  Id A t u
               Γ  v₁ ~ v₂  Id A′ t′ u′
               Γ  v₁ [conv↓] v₂  Id A t u

    rfl-refl  :  {A}
               Γ  t  u  A
               Γ  rfl [conv↓] rfl  Id A t u

opaque

  star-refl :  Γ  Unit-allowed s  Γ  star s [conv↓] star s  Unit s
  star-refl {s} ⊢Γ ok =
    case Unit-with-η? s of λ where
      (inj₂ (PE.refl , no-η))  starʷ-refl ⊢Γ ok no-η
      (inj₁ η)                
        η-unit (starⱼ ⊢Γ ok) (starⱼ ⊢Γ ok) starₙ starₙ η

-- An inversion lemma for prod-cong.

prod-cong⁻¹ :
   {t′ u′} 
  Γ  prodʷ p t u [conv↓] prodʷ p′ t′ u′  Σʷ p″ , q  F  G 
  p PE.≡ p′ ×
  p PE.≡ p″ ×
  Γ  F ×
  Γ  F  G ×
  (Γ  t [conv↑] t′  F) ×
  (Γ  u [conv↑] u′  G [ t ]₀) ×
  Σʷ-allowed p q
prod-cong⁻¹ (prod-cong F G t u ok) =
  PE.refl , PE.refl , F , G , t , u , ok

-- An inversion lemma for J-cong.

J-cong⁻¹ :
  Γ  J p₁ q₁ A₁ t₁ B₁ u₁ v₁ w₁ ~ J p₂ q₂ A₂ t₂ B₂ u₂ v₂ w₂  C 
   λ D 
  p₁ PE.≡ p₂ ×
  q₁ PE.≡ q₂ ×
  (Γ  A₁ [conv↑] A₂) ×
  Γ  t₁ [conv↑] t₂  A₁ ×
  (Γ  A₁  Id (wk1 A₁) (wk1 t₁) (var x0)  B₁ [conv↑] B₂) ×
  Γ  u₁ [conv↑] u₂  B₁ [ t₁ , rfl ]₁₀ ×
  Γ  v₁ [conv↑] v₂  A₁ ×
  Γ  w₁ ~ w₂  D ×
  Γ  D  Id A₁ t₁ v₁ ×
  C PE.≡ B₁ [ v₁ , w₁ ]₁₀
J-cong⁻¹ (J-cong A t B u v w D) =
  _ , PE.refl , PE.refl , A , t , B , u , v , w , D , PE.refl

-- An inversion lemma for K-cong.

K-cong⁻¹ :
  Γ  K p₁ A₁ t₁ B₁ u₁ v₁ ~ K p₂ A₂ t₂ B₂ u₂ v₂  C 
   λ D 
  p₁ PE.≡ p₂ ×
  (Γ  A₁ [conv↑] A₂) ×
  Γ  t₁ [conv↑] t₂  A₁ ×
  (Γ  Id A₁ t₁ t₁  B₁ [conv↑] B₂) ×
  Γ  u₁ [conv↑] u₂  B₁ [ rfl ]₀ ×
  Γ  v₁ ~ v₂  D ×
  Γ  D  Id A₁ t₁ t₁ ×
  K-allowed ×
  C PE.≡ B₁ [ v₁ ]₀
K-cong⁻¹ (K-cong A t B u v D ok) =
  _ , PE.refl , A , t , B , u , v , D , ok , PE.refl