open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.LogicalRelation.Weakening
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
{{eqrel : EqRelSet R}}
where
open EqRelSet {{...}}
open Type-restrictions R
open import Definition.Untyped M as U hiding (wk; K)
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Definition.Typed.Weakening R as T hiding (wk; wkEq; wkTerm; wkEqTerm)
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Irrelevance R
open import Definition.LogicalRelation.Properties R
open import Definition.LogicalRelation.Weakening.Restricted R
open import Tools.Function
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Reasoning.PropositionalEquality
private
variable
m n : Nat
ρ : Wk m n
Γ Δ : Con Term m
A B t u : Term m
l : Universe-level
s : Strength
wkEqTermNe : ∀ {k k′ A} → ρ ∷ʷ Δ ⊇ Γ
→ Γ ⊩neNf k ≡ k′ ∷ A → Δ ⊩neNf U.wk ρ k ≡ U.wk ρ k′ ∷ U.wk ρ A
wkEqTermNe {ρ} [ρ] (neNfₜ₌ inc neK neM k≡m) =
neNfₜ₌ inc (wkNeutral ρ neK) (wkNeutral ρ neM) (~-wk [ρ] k≡m)
mutual
wkEqTermℕ : ∀ {t u} → ρ ∷ʷ Δ ⊇ Γ
→ Γ ⊩ℕ t ≡ u ∷ℕ
→ Δ ⊩ℕ U.wk ρ t ≡ U.wk ρ u ∷ℕ
wkEqTermℕ {ρ = ρ} [ρ] (ℕₜ₌ k k′ d d′ t≡u prop) =
ℕₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed*Term [ρ] d)
(wkRed*Term [ρ] d′) (≅ₜ-wk [ρ] t≡u)
(wk[Natural]-prop [ρ] prop)
wk[Natural]-prop : ∀ {n n′} → ρ ∷ʷ Δ ⊇ Γ
→ [Natural]-prop Γ n n′
→ [Natural]-prop Δ (U.wk ρ n) (U.wk ρ n′)
wk[Natural]-prop ρ (sucᵣ [n≡n′]) = sucᵣ (wkEqTermℕ ρ [n≡n′])
wk[Natural]-prop ρ zeroᵣ = zeroᵣ
wk[Natural]-prop ρ (ne x) = ne (wkEqTermNe ρ x)
wk[Empty]-prop : ∀ {n n′} → ρ ∷ʷ Δ ⊇ Γ
→ [Empty]-prop Γ n n′
→ [Empty]-prop Δ (U.wk ρ n) (U.wk ρ n′)
wk[Empty]-prop ρ (ne x) = ne (wkEqTermNe ρ x)
wkEqTermEmpty : ∀ {t u} → ρ ∷ʷ Δ ⊇ Γ
→ Γ ⊩Empty t ≡ u ∷Empty
→ Δ ⊩Empty U.wk ρ t ≡ U.wk ρ u ∷Empty
wkEqTermEmpty {ρ} [ρ] (Emptyₜ₌ k k′ d d′ t≡u prop) =
Emptyₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed*Term [ρ] d)
(wkRed*Term [ρ] d′) (≅ₜ-wk [ρ] t≡u) (wk[Empty]-prop [ρ] prop)
wk[Unitʷ]-prop : ∀ {t u} → ρ ∷ʷ Δ ⊇ Γ
→ [Unitʷ]-prop Γ l t u
→ [Unitʷ]-prop Δ l (U.wk ρ t) (U.wk ρ u)
wk[Unitʷ]-prop [ρ] starᵣ = starᵣ
wk[Unitʷ]-prop [ρ] (ne x) = ne (wkEqTermNe [ρ] x)
wk[Unit]-prop :
ρ ∷ʷ Δ ⊇ Γ →
[Unit]-prop Γ l s t u →
[Unit]-prop Δ l s (U.wk ρ t) (U.wk ρ u)
wk[Unit]-prop ρ (Unitₜ₌ʷ prop no-η) =
Unitₜ₌ʷ (wk[Unitʷ]-prop ρ prop) no-η
wk[Unit]-prop ρ (Unitₜ₌ˢ η) =
Unitₜ₌ˢ η
wk :
{ρ : Wk m n} →
ρ ∷ʷʳ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ A → Δ ⊩⟨ l ⟩ U.wk ρ A
wkEq :
([ρ] : ρ ∷ʷʳ Δ ⊇ Γ) ([A] : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ A ≡ B / [A] →
Δ ⊩⟨ l ⟩ U.wk ρ A ≡ U.wk ρ B / wk [ρ] [A]
wkEqTerm :
([ρ] : ρ ∷ʷʳ Δ ⊇ Γ) ([A] : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] →
Δ ⊩⟨ l ⟩ U.wk ρ t ≡ U.wk ρ u ∷ U.wk ρ A / wk [ρ] [A]
wkTerm :
([ρ] : ρ ∷ʷʳ Δ ⊇ Γ) ([A] : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ t ∷ A / [A] →
Δ ⊩⟨ l ⟩ U.wk ρ t ∷ U.wk ρ A / wk [ρ] [A]
wkTerm ⊩A ⊩t = wkEqTerm ⊩A ⊩t
wk ρ (Uᵣ′ l′ l< D) = Uᵣ′ l′ l< (wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) D)
wk ρ (ℕᵣ D) = ℕᵣ (wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) D)
wk ρ (Emptyᵣ D) = Emptyᵣ (wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) D)
wk ρ (Unitᵣ′ l′ l′≤ D ok) =
Unitᵣ′ l′ l′≤ (wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) D) ok
wk {ρ} [ρ] (ne′ inc _ D neK K≡K) =
let [ρ] = ∷ʷʳ⊇→∷ʷ⊇ [ρ] in
ne′ inc (U.wk ρ _) (wkRed* [ρ] D) (wkNeutral ρ neK) (≅-wk [ρ] K≡K)
wk {m} {Δ} {Γ} {l} {A} {ρ} [ρ] (Πᵣ′ F G D A≡A [F] [G] G-ext ok) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ]
[F]′ : ∀ {k} {ρ : Wk k m} {ρ′ E}
([ρ] : ρ ∷ʷʳ E ⊇ Δ) ([ρ′] : ρ′ ∷ʷʳ Δ ⊇ Γ)
→ E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F)
[F]′ {_} {ρ} {ρ′} [ρ] [ρ′] =
irrelevance′ (PE.sym (wk-comp ρ ρ′ F)) ([F] ([ρ] •ₜʷʳ [ρ′]))
[a]′ : ∀ {k} {ρ : Wk k m} {ρ′ E a}
([ρ] : ρ ∷ʷʳ E ⊇ Δ) ([ρ′] : ρ′ ∷ʷʳ Δ ⊇ Γ)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′])
→ E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F / [F] ([ρ] •ₜʷʳ [ρ′])
[a]′ {_} {ρ} {ρ′} [ρ] [ρ′] [a] =
irrelevanceTerm′ (wk-comp ρ ρ′ F) ([F]′ [ρ] [ρ′]) ([F] _) [a]
[G]′ : ∀ {k} {ρ : Wk k m} {ρ′} {E} {a}
([ρ] : ρ ∷ʷʳ E ⊇ Δ) ([ρ′] : ρ′ ∷ʷʳ Δ ⊇ Γ)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′])
→ E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ]₀
[G]′ {_} η η′ [a] = [G] _ ([a]′ η η′ [a])
in Πᵣ′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed* [ρ]′ D)
(≅-wk [ρ]′ A≡A)
(λ {_} {ρ₁} [ρ₁] → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] _))
(λ {_} {ρ₁} [ρ₁] [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] [a]))
(λ {_} {ρ₁} [ρ₁] [a] [b] [a≡b] →
let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F)
([F]′ [ρ₁] [ρ]) ([F] _) [a≡b]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] [a])
(irrelevance′
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] [a]))
(G-ext _
([a]′ [ρ₁] [ρ] [a])
([a]′ [ρ₁] [ρ] [b])
[a≡b]′))
ok
wk {m} {Δ} {Γ} {l} {A} {ρ} [ρ] (Σᵣ′ F G D A≡A [F] [G] G-ext ok) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ]
[F]′ : ∀ {k} {ρ : Wk k m} {ρ′ E}
([ρ] : ρ ∷ʷʳ E ⊇ Δ) ([ρ′] : ρ′ ∷ʷʳ Δ ⊇ Γ)
→ E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F)
[F]′ {_} {ρ} {ρ′} [ρ] [ρ′] =
irrelevance′ (PE.sym (wk-comp ρ ρ′ F)) ([F] ([ρ] •ₜʷʳ [ρ′]))
[a]′ : ∀ {k} {ρ : Wk k m} {ρ′ E a}
([ρ] : ρ ∷ʷʳ E ⊇ Δ) ([ρ′] : ρ′ ∷ʷʳ Δ ⊇ Γ)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′])
→ E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F / [F] ([ρ] •ₜʷʳ [ρ′])
[a]′ {_} {ρ} {ρ′} [ρ] [ρ′] [a] =
irrelevanceTerm′ (wk-comp ρ ρ′ F) ([F]′ [ρ] [ρ′]) ([F] _) [a]
[G]′ : ∀ {k} {ρ : Wk k m} {ρ′ E a}
([ρ] : ρ ∷ʷʳ E ⊇ Δ) ([ρ′] : ρ′ ∷ʷʳ Δ ⊇ Γ)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′])
→ E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ]₀
[G]′ {_} η η′ [a] = [G] _ ([a]′ η η′ [a])
in Σᵣ′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed* [ρ]′ D)
(≅-wk [ρ]′ A≡A)
(λ {_} {ρ₁} [ρ₁] → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] _))
(λ {_} {ρ₁} [ρ₁] [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] [a]))
(λ {_} {ρ₁} [ρ₁] [a] [b] [a≡b] →
let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F)
([F]′ [ρ₁] [ρ]) ([F] _) [a≡b]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] [a])
(irrelevance′
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] [a]))
(G-ext _
([a]′ [ρ₁] [ρ] [a])
([a]′ [ρ₁] [ρ] [b])
[a≡b]′))
ok
wk ρ∷⊇ (Idᵣ ⊩A) = Idᵣ (record
{ ⇒*Id = wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ∷⊇) ⇒*Id
; ⊩Ty = wk ρ∷⊇ ⊩Ty
; ⊩lhs = wkTerm ρ∷⊇ ⊩Ty ⊩lhs
; ⊩rhs = wkTerm ρ∷⊇ ⊩Ty ⊩rhs
})
where
open _⊩ₗId_ ⊩A
wkEq ρ (Uᵣ′ l l< D) D′ = wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) D′
wkEq ρ (ℕᵣ D) A≡B = wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) A≡B
wkEq ρ (Emptyᵣ D) A≡B = wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) A≡B
wkEq ρ (Unitᵣ′ _ _ D _) A≡B = wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ) A≡B
wkEq {ρ = ρ} [ρ] (ne′ _ _ _ _ _) (ne₌ inc M D′ neM K≡M) =
let [ρ] = ∷ʷʳ⊇→∷ʷ⊇ [ρ] in
ne₌ inc (U.wk ρ M) (wkRed* [ρ] D′) (wkNeutral ρ neM)
(≅-wk [ρ] K≡M)
wkEq
{ρ}
[ρ] (Πᵣ′ F G D A≡A [F] [G] G-ext _) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ] in
B₌ (U.wk ρ F′)
(U.wk (lift ρ) G′) (T.wkRed* [ρ]′ D′) (≅-wk [ρ]′ A≡B)
(λ {_} {ρ₁} [ρ₁] → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F))
(PE.sym (wk-comp ρ₁ ρ F′))
([F] ([ρ₁] •ₜʷʳ [ρ]))
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] _))
([F≡F′] _))
(λ {_} {ρ₁} [ρ₁] [a] →
let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] _))
([F] _) [a]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G′)
([G] _ [a]′)
(irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G] _ [a]′))
([G≡G′] _ [a]′))
wkEq
{ρ}
[ρ] (Σᵣ′ F G D A≡A [F] [G] G-ext _) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ] in
B₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ]′ D′) (≅-wk [ρ]′ A≡B)
(λ {_} {ρ₁} [ρ₁] → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F))
(PE.sym (wk-comp ρ₁ ρ F′))
([F] ([ρ₁] •ₜʷʳ [ρ]))
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] _))
([F≡F′] _))
(λ {_} {ρ₁} [ρ₁] [a] →
let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] _))
([F] _) [a]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G′)
([G] _ [a]′)
(irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G] _ [a]′))
([G≡G′] _ [a]′))
wkEq ρ∷⊇ (Idᵣ ⊩A) A≡B = Id₌′
(wkRed* (∷ʷʳ⊇→∷ʷ⊇ ρ∷⊇) ⇒*Id′)
(wkEq ρ∷⊇ ⊩Ty Ty≡Ty′)
(wkEqTerm ρ∷⊇ ⊩Ty lhs≡lhs′)
(wkEqTerm ρ∷⊇ ⊩Ty rhs≡rhs′)
where
open _⊩ₗId_ ⊩A
open _⊩ₗId_≡_/_ A≡B
wkEqTerm
{ρ} {l = 1+ l′} [ρ] (Uᵣ′ l (≤ᵘ-step l<) D)
(Uₜ₌ A B d d′ typeA typeB A≡B [t] [u] [t≡u]) =
let wkET′ = wkEqTerm {ρ = ρ} [ρ] (Uᵣ′ l l< D)
(Uₜ₌ A B d d′ typeA typeB A≡B [t] [u] [t≡u])
in
irrelevanceEqTerm (wk [ρ] (Uᵣ′ l l< D))
(wk [ρ] (Uᵣ′ l (≤ᵘ-step l<) D)) wkET′
wkEqTerm
{ρ} [ρ] (Uᵣ′ l ≤ᵘ-refl D)
(Uₜ₌ A B d d′ typeA typeB A≡B [t] [u] [t≡u]) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ] in
Uₜ₌ (U.wk ρ A) (U.wk ρ B) (wkRed*Term [ρ]′ d) (wkRed*Term [ρ]′ d′)
(wkType ρ typeA) (wkType ρ typeB) (≅ₜ-wk [ρ]′ A≡B) (wk [ρ] [t])
(wk [ρ] [u]) (wkEq [ρ] [t] [t≡u])
wkEqTerm ρ (ℕᵣ D) [t≡u] = wkEqTermℕ (∷ʷʳ⊇→∷ʷ⊇ ρ) [t≡u]
wkEqTerm ρ (Emptyᵣ D) [t≡u] = wkEqTermEmpty (∷ʷʳ⊇→∷ʷ⊇ ρ) [t≡u]
wkEqTerm ρ (Unitᵣ′ _ _ _ _) (Unitₜ₌ _ _ ↘v ↘w prop) =
let ρ = ∷ʷʳ⊇→∷ʷ⊇ ρ in
Unitₜ₌ _ _ (wkRed↘Term ρ ↘v) (wkRed↘Term ρ ↘w) (wk[Unit]-prop ρ prop)
wkEqTerm {ρ} [ρ] (ne′ _ _ D neK K≡K) (neₜ₌ k m d d′ nf) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ] in
neₜ₌ (U.wk ρ k) (U.wk ρ m) (wkRed*Term [ρ]′ d)
(wkRed*Term [ρ]′ d′) (wkEqTermNe [ρ]′ nf)
wkEqTerm {ρ} [ρ] (Πᵣ′ F G _ _ [F] [G] _ _)
(Πₜ₌ f g d d′ funcF funcG f≡g [f≡g]) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ]
in Πₜ₌ (U.wk ρ f) (U.wk ρ g)
(wkRed*Term [ρ]′ d) (wkRed*Term [ρ]′ d′)
(wkFunction ρ funcF) (wkFunction ρ funcG) (≅ₜ-wk [ρ]′ f≡g)
(λ {_} {ρ₁} [ρ₁] ⊩v ⊩w v≡w →
let eq = wk-comp ρ₁ ρ F
[F]₁ = [F] _
[F]₂ = irrelevance′ (PE.sym eq) [F]₁
⊩v′ = irrelevanceTerm′ eq [F]₂ [F]₁ ⊩v
[G]₁ = [G] _ ⊩v′
[G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁
in irrelevanceEqTerm″ (PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(wk-comp-subst ρ₁ ρ G)
[G]₁ [G]₂
([f≡g] _ ⊩v′ (irrelevanceTerm′ eq [F]₂ [F]₁ ⊩w)
(irrelevanceEqTerm′ eq [F]₂ [F]₁ v≡w)))
wkEqTerm {ρ} [ρ] [A]@(Bᵣ′ BΣʷ F G _ _ [F] [G] _ _)
(Σₜ₌ p r d d′ (prodₙ {t = p₁}) prodₙ p≅r
(PE.refl , PE.refl , PE.refl , PE.refl ,
[p₁] , [r₁] , [fst≡] , [snd≡])) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ]
ρidF≡idρF = begin
U.wk ρ (U.wk id F)
≡⟨ PE.cong (U.wk ρ) (wk-id F) ⟩
U.wk ρ F
≡⟨ PE.sym (wk-id (U.wk ρ F)) ⟩
U.wk id (U.wk ρ F)
∎
[ρF] = irrelevance′ (PE.sym (wk-comp id ρ F)) ([F] [ρ])
[ρp₁] = wkTerm [ρ] ([F] _) [p₁]
[ρp₁]′ = irrelevanceTerm′
ρidF≡idρF
(wk [ρ] ([F] _)) [ρF]
[ρp₁]
[ρr₁] = wkTerm [ρ] ([F] _) [r₁]
[ρr₁]′ = irrelevanceTerm′
ρidF≡idρF
(wk [ρ] ([F] _)) [ρF]
[ρr₁]
[ρfst≡] = wkEqTerm [ρ] ([F] _) [fst≡]
[ρfst≡]′ = irrelevanceEqTerm′
ρidF≡idρF
(wk [ρ] ([F] _)) [ρF]
[ρfst≡]
[ρsnd≡] = wkEqTerm [ρ] ([G] _ [p₁]) [snd≡]
[ρG]′ = irrelevance′ (wk-comp-subst id ρ G)
([G] [ρ]
(irrelevanceTerm′ (wk-comp id ρ F)
[ρF] ([F] [ρ]) [ρp₁]′))
ρG-eq = λ t → (begin
U.wk ρ (U.wk (lift id) G [ t ]₀)
≡⟨ PE.cong (λ x → U.wk ρ (x [ t ]₀)) (wk-lift-id G) ⟩
U.wk ρ (G [ t ]₀)
≡⟨ wk-β G ⟩
(U.wk (lift ρ) G) [ U.wk ρ t ]₀
≡⟨ PE.cong (λ x → x [ U.wk ρ t ]₀) (PE.sym (wk-lift-id (U.wk (lift ρ) G))) ⟩
(U.wk (lift id) (U.wk (lift ρ) G)) [ U.wk ρ t ]₀
∎)
[ρsnd≡]′ = irrelevanceEqTerm′
(ρG-eq p₁)
(wk [ρ] ([G] _ [p₁])) [ρG]′
[ρsnd≡]
in Σₜ₌ (U.wk ρ p) (U.wk ρ r)
(wkRed*Term [ρ]′ d) (wkRed*Term [ρ]′ d′)
(wkProduct ρ prodₙ) (wkProduct ρ prodₙ) (≅ₜ-wk [ρ]′ p≅r)
(PE.refl , PE.refl , PE.refl , PE.refl ,
irrelevanceTerm [ρF]
(irrelevance′ (PE.sym (wk-comp id ρ F)) _) [ρp₁]′ ,
irrelevanceTerm [ρF]
(irrelevance′ (PE.sym (wk-comp id ρ F)) _) [ρr₁]′ ,
irrelevanceEqTerm [ρF]
(irrelevance′ (PE.sym (wk-comp id ρ F)) _) [ρfst≡]′ ,
irrelevanceEqTerm [ρG]′
(irrelevance′ (wk-comp-subst id ρ G) _) [ρsnd≡]′)
wkEqTerm
{ρ} [ρ] [A]@(Bᵣ′ BΣʷ _ _ _ _ _ _ _ _)
(Σₜ₌ p r d d′ (ne x) (ne y) p≅r (inc , p~r)) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ]
in Σₜ₌ (U.wk ρ p) (U.wk ρ r)
(wkRed*Term [ρ]′ d) (wkRed*Term [ρ]′ d′)
(wkProduct ρ (ne x)) (wkProduct ρ (ne y)) (≅ₜ-wk [ρ]′ p≅r)
(inc , ~-wk [ρ]′ p~r)
wkEqTerm
{ρ} [ρ] [A]@(Bᵣ′ BΣˢ F G _ _ [F] [G] _ _)
(Σₜ₌ p r d d′ pProd rProd p≅r ([fstp] , [fstr] , [fst≡] , [snd≡])) =
let [ρ]′ = ∷ʷʳ⊇→∷ʷ⊇ [ρ]
ρidF≡idρF = begin
U.wk ρ (U.wk id F)
≡⟨ PE.cong (U.wk ρ) (wk-id F) ⟩
U.wk ρ F
≡⟨ PE.sym (wk-id (U.wk ρ F)) ⟩
U.wk id (U.wk ρ F)
∎
[ρF] = irrelevance′ (PE.sym (wk-comp id ρ F)) ([F] [ρ])
[ρfstp] = wkTerm [ρ] ([F] _) [fstp]
[ρfstp]′ = irrelevanceTerm′
ρidF≡idρF
(wk [ρ] ([F] _)) [ρF]
[ρfstp]
[ρfstr] = wkTerm [ρ] ([F] _) [fstr]
[ρfstr]′ = irrelevanceTerm′
ρidF≡idρF
(wk [ρ] ([F] _)) [ρF]
[ρfstr]
[ρfst≡] = wkEqTerm [ρ] ([F] _) [fst≡]
[ρfst≡]′ = irrelevanceEqTerm′
ρidF≡idρF
(wk [ρ] ([F] _)) [ρF]
[ρfst≡]
[ρsnd≡] = wkEqTerm [ρ] ([G] _ [fstp]) [snd≡]
[ρG]′ = irrelevance′ (wk-comp-subst id ρ G)
([G] [ρ]
(irrelevanceTerm′ (wk-comp id ρ F)
[ρF] ([F] [ρ]) [ρfstp]′))
[ρsnd≡]′ = irrelevanceEqTerm′
(begin
U.wk ρ (U.wk (lift id) G [ fst _ p ]₀) ≡⟨ PE.cong (λ x → U.wk ρ (x [ fst _ p ]₀)) (wk-lift-id G) ⟩
U.wk ρ (G [ fst _ p ]₀) ≡⟨ wk-β G ⟩
(U.wk (lift ρ) G) [ fst _ (U.wk ρ p) ]₀ ≡⟨ PE.cong (λ x → x [ fst _ (U.wk ρ p) ]₀)
(PE.sym (wk-lift-id (U.wk (lift ρ) G))) ⟩
(U.wk (lift id) (U.wk (lift ρ) G)) [ fst _ (U.wk ρ p) ]₀ ∎)
(wk [ρ] ([G] _ [fstp])) [ρG]′
[ρsnd≡]
in Σₜ₌ (U.wk ρ p) (U.wk ρ r)
(wkRed*Term [ρ]′ d) (wkRed*Term [ρ]′ d′)
(wkProduct ρ pProd) (wkProduct ρ rProd) (≅ₜ-wk [ρ]′ p≅r)
(irrelevanceTerm [ρF]
(irrelevance′ (PE.sym (wk-comp id ρ F)) _) [ρfstp]′ ,
irrelevanceTerm [ρF]
(irrelevance′ (PE.sym (wk-comp id ρ F)) _) [ρfstr]′ ,
irrelevanceEqTerm [ρF]
(irrelevance′ (PE.sym (wk-comp id ρ F)) _) [ρfst≡]′ ,
irrelevanceEqTerm [ρG]′
(irrelevance′ (wk-comp-subst id ρ G) _) [ρsnd≡]′)
wkEqTerm ρ∷⊇ (Idᵣ ⊩A) t≡u@(_ , _ , t⇒*t′ , u⇒*u′ , _) =
let ρ∷⊇′ = ∷ʷʳ⊇→∷ʷ⊇ ρ∷⊇ in
_ , _
, wkRed*Term ρ∷⊇′ t⇒*t′
, wkRed*Term ρ∷⊇′ u⇒*u′
, (case ⊩Id≡∷-view-inhabited ⊩A t≡u of λ where
(rfl₌ lhs≡rhs) →
rflₙ , rflₙ
, wkEqTerm ρ∷⊇ ⊩Ty lhs≡rhs
(ne inc t′-n u′-n t′~u′) →
ne (wkNeutral _ t′-n)
, ne (wkNeutral _ u′-n)
, inc
, ~-wk ρ∷⊇′ t′~u′)
where
open _⊩ₗId_ ⊩A
wkEqTerm _ (Bᵣ BΣʷ record{}) (Σₜ₌ _ _ _ _ prodₙ (ne _) _ ())
wkEqTerm _ (Bᵣ BΣʷ record{}) (Σₜ₌ _ _ _ _ (ne _) prodₙ _ ())