{-# OPTIONS --backtracking-instance-search #-}
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typed.Stability.Primitive
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
where
open import Definition.Typed R
open import Definition.Typed.Inversion.Primitive R
open import Definition.Typed.Properties.Admissible.Var R
open import Definition.Typed.Properties.Well-formed R
open import Definition.Typed.Size R
open import Definition.Typed.Weakening R
open import Definition.Untyped M
open import Tools.Fin
open import Tools.Function
open import Tools.Nat
open import Tools.Product as Σ
import Tools.PropositionalEquality as PE
open import Tools.Size
open import Tools.Size.Instances
private variable
n : Nat
x : Fin _
Γ Δ Η : Con Term _
A B t u : Term _
σ σ₁ σ₂ : Subst _ _
s s₂ : Size
infix 24 _∙⟨_∣_⟩
data ⊢_≡_ : (_ _ : Con Term n) → Set a where
ε : ⊢ ε ≡ ε
_∙⟨_∣_⟩ : ⊢ Γ ≡ Δ → Δ ⊢ B → Δ ⊢ A ≡ B → ⊢ Γ ∙ A ≡ Δ ∙ B
opaque
infix 24 _∙⟨_⟩
_∙⟨_⟩ : ⊢ Γ ≡ Δ → Δ ⊢ A → ⊢ Γ ∙ A ≡ Δ ∙ A
Γ≡Δ ∙⟨ ⊢A ⟩ = Γ≡Δ ∙⟨ ⊢A ∣ refl ⊢A ⟩
opaque
wf-⊢≡ʳ : ⊢ Γ ≡ Δ → ⊢ Δ
wf-⊢≡ʳ ε = ε
wf-⊢≡ʳ (_ ∙⟨ ⊢B ∣ _ ⟩) = ∙ ⊢B
opaque
reflConEq : ⊢ Γ → ⊢ Γ ≡ Γ
reflConEq ε = ε
reflConEq (∙ ⊢A) = reflConEq (wf ⊢A) ∙⟨ ⊢A ⟩
opaque
refl-∙⟨_∣_⟩ : Γ ⊢ B → Γ ⊢ A ≡ B → ⊢ Γ ∙ A ≡ Γ ∙ B
refl-∙⟨ ⊢B ∣ A≡B ⟩ = reflConEq (wf ⊢B) ∙⟨ ⊢B ∣ A≡B ⟩
opaque
stability-⊢∈ :
⊢ Γ ≡ Δ → x ∷ A ∈ Γ →
∃ λ B → Δ ⊢ A ≡ B × x ∷ B ∈ Δ
stability-⊢∈ ε ()
stability-⊢∈ (Γ≡Δ ∙⟨ ⊢B ∣ A≡B ⟩) here =
_ , wkEq₁ ⊢B A≡B , here
stability-⊢∈ (Γ≡Δ ∙⟨ ⊢B ∣ _ ⟩) (there x∈) =
Σ.map wk1 (Σ.map (wkEq₁ ⊢B) there) $
stability-⊢∈ Γ≡Δ x∈
private
record P (s : Size) : Set a where
no-eta-equality
field
stability-⊢ :
⊢ Γ ≡ Δ →
(⊢A : Γ ⊢ A) →
size-⊢ ⊢A PE.≡ s →
Δ ⊢ A
stability-⊢≡ :
⊢ Γ ≡ Δ →
(A≡B : Γ ⊢ A ≡ B) →
size-⊢≡ A≡B PE.≡ s →
Δ ⊢ A ≡ B
stability-⊢∷ :
⊢ Γ ≡ Δ →
(⊢t : Γ ⊢ t ∷ A) →
size-⊢∷ ⊢t PE.≡ s →
Δ ⊢ t ∷ A
stability-⊢≡∷ :
⊢ Γ ≡ Δ →
(t≡u : Γ ⊢ t ≡ u ∷ A) →
size-⊢≡∷ t≡u PE.≡ s →
Δ ⊢ t ≡ u ∷ A
private module Variants (hyp : ∀ {s₁} → s₁ <ˢ s₂ → P s₁) where
opaque
stability-⊢ :
⊢ Γ ≡ Δ →
(⊢A : Γ ⊢ A)
⦃ lt : size-⊢ ⊢A <ˢ s₂ ⦄ →
Δ ⊢ A
stability-⊢ Γ≡Δ ⊢A ⦃ lt ⦄ = P.stability-⊢ (hyp lt) Γ≡Δ ⊢A PE.refl
stability-⊢≡ :
⊢ Γ ≡ Δ →
(A≡B : Γ ⊢ A ≡ B)
⦃ lt : size-⊢≡ A≡B <ˢ s₂ ⦄ →
Δ ⊢ A ≡ B
stability-⊢≡ Γ≡Δ A≡B ⦃ lt ⦄ =
P.stability-⊢≡ (hyp lt) Γ≡Δ A≡B PE.refl
stability-⊢∷ :
⊢ Γ ≡ Δ →
(⊢t : Γ ⊢ t ∷ A)
⦃ lt : size-⊢∷ ⊢t <ˢ s₂ ⦄ →
Δ ⊢ t ∷ A
stability-⊢∷ Γ≡Δ ⊢t ⦃ lt ⦄ = P.stability-⊢∷ (hyp lt) Γ≡Δ ⊢t PE.refl
stability-⊢≡∷ :
⊢ Γ ≡ Δ →
(t≡u : Γ ⊢ t ≡ u ∷ A)
⦃ lt : size-⊢≡∷ t≡u <ˢ s₂ ⦄ →
Δ ⊢ t ≡ u ∷ A
stability-⊢≡∷ Γ≡Δ t≡u ⦃ lt ⦄ =
P.stability-⊢≡∷ (hyp lt) Γ≡Δ t≡u PE.refl
private module Inhabited where
opaque
unfolding size-⊢
stability-⊢′ :
(∀ {s₁} → s₁ <ˢ s₂ → P s₁) →
⊢ Γ ≡ Δ →
(⊢A : Γ ⊢ A) →
size-⊢ ⊢A PE.≡ s₂ →
Δ ⊢ A
stability-⊢′ hyp Γ≡Δ = let open Variants hyp in λ where
(Uⱼ _) _ →
Uⱼ (wf-⊢≡ʳ Γ≡Δ)
(univ ⊢A) PE.refl →
univ (stability-⊢∷ Γ≡Δ ⊢A)
(ΠΣⱼ ⊢B ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
ΠΣⱼ (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) ok
(Emptyⱼ _) _ →
Emptyⱼ (wf-⊢≡ʳ Γ≡Δ)
(Unitⱼ _ ok) _ →
Unitⱼ (wf-⊢≡ʳ Γ≡Δ) ok
(ℕⱼ _) _ →
ℕⱼ (wf-⊢≡ʳ Γ≡Δ)
(Idⱼ ⊢A ⊢t ⊢u) PE.refl →
Idⱼ (stability-⊢ Γ≡Δ ⊢A) (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ Γ≡Δ ⊢u)
opaque
unfolding size-⊢≡
stability-⊢≡′ :
(∀ {s₁} → s₁ <ˢ s₂ → P s₁) →
⊢ Γ ≡ Δ →
(A≡B : Γ ⊢ A ≡ B) →
size-⊢≡ A≡B PE.≡ s₂ →
Δ ⊢ A ≡ B
stability-⊢≡′ hyp Γ≡Δ = let open Variants hyp in λ where
(refl ⊢A) PE.refl →
refl (stability-⊢ Γ≡Δ ⊢A)
(sym B≡A) PE.refl →
sym (stability-⊢≡ Γ≡Δ B≡A)
(trans A≡B B≡C) PE.refl →
trans (stability-⊢≡ Γ≡Δ A≡B) (stability-⊢≡ Γ≡Δ B≡C)
(univ A≡B) PE.refl →
univ (stability-⊢≡∷ Γ≡Δ A≡B)
(ΠΣ-cong A₁≡B₁ A₂≡B₂ ok) PE.refl →
let _ , (⊢A₁ , A₁<) = ∙⊢≡→⊢-<ˢ A₂≡B₂
⊢A₁′ = stability-⊢ Γ≡Δ ⊢A₁
⦃ lt = <ˢ-trans A₁< ! ⦄
in
ΠΣ-cong (stability-⊢≡ Γ≡Δ A₁≡B₁)
(stability-⊢≡ (Γ≡Δ ∙⟨ ⊢A₁′ ⟩) A₂≡B₂) ok
(Id-cong A≡B t₁≡u₁ t₂≡u₂) PE.refl →
Id-cong (stability-⊢≡ Γ≡Δ A≡B) (stability-⊢≡∷ Γ≡Δ t₁≡u₁)
(stability-⊢≡∷ Γ≡Δ t₂≡u₂)
opaque
unfolding size-⊢∷
stability-⊢∷′ :
(∀ {s₁} → s₁ <ˢ s₂ → P s₁) →
⊢ Γ ≡ Δ →
(⊢t : Γ ⊢ t ∷ A) →
size-⊢∷ ⊢t PE.≡ s₂ →
Δ ⊢ t ∷ A
stability-⊢∷′ hyp Γ≡Δ = let open Variants hyp in λ where
(conv ⊢t B≡A) PE.refl →
conv (stability-⊢∷ Γ≡Δ ⊢t) (stability-⊢≡ Γ≡Δ B≡A)
(var _ x∈Γ) _ →
let _ , A≡B , x∈Δ = stability-⊢∈ Γ≡Δ x∈Γ in
conv (var (wf-⊢≡ʳ Γ≡Δ) x∈Δ) (sym A≡B)
(Uⱼ _) _ →
Uⱼ (wf-⊢≡ʳ Γ≡Δ)
(ΠΣⱼ ⊢A ⊢B ok) PE.refl →
let ⊢A′ = stability-⊢∷ Γ≡Δ ⊢A in
ΠΣⱼ ⊢A′ (stability-⊢∷ (Γ≡Δ ∙⟨ univ ⊢A′ ⟩) ⊢B) ok
(lamⱼ ⊢B ⊢t ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢∷→⊢-<ˢ ⊢t
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
Γ∙A≡Δ∙A = Γ≡Δ ∙⟨ ⊢A′ ⟩
in
lamⱼ (stability-⊢ Γ∙A≡Δ∙A ⊢B) (stability-⊢∷ Γ∙A≡Δ∙A ⊢t) ok
(⊢t ∘ⱼ ⊢u) PE.refl →
stability-⊢∷ Γ≡Δ ⊢t ∘ⱼ stability-⊢∷ Γ≡Δ ⊢u
(prodⱼ ⊢B ⊢t ⊢u ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
prodⱼ (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ Γ≡Δ ⊢u) ok
(fstⱼ ⊢B ⊢t) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
fstⱼ (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) (stability-⊢∷ Γ≡Δ ⊢t)
(sndⱼ ⊢B ⊢t) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
sndⱼ (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) (stability-⊢∷ Γ≡Δ ⊢t)
(prodrecⱼ ⊢C ⊢t ⊢u ok) PE.refl →
let _ , (⊢A , A<) , (⊢B , B<) = ∙∙⊢∷→⊢-<ˢ ⊢u
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢B′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B
⦃ lt = <ˢ-trans B< ! ⦄
in
prodrecⱼ (stability-⊢ (Γ≡Δ ∙⟨ ΠΣⱼ ⊢B′ ok ⟩) ⊢C)
(stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ (Γ≡Δ ∙⟨ ⊢A′ ⟩ ∙⟨ ⊢B′ ⟩) ⊢u) ok
(Emptyⱼ _) _ →
Emptyⱼ (wf-⊢≡ʳ Γ≡Δ)
(emptyrecⱼ ⊢A ⊢t) PE.refl →
emptyrecⱼ (stability-⊢ Γ≡Δ ⊢A) (stability-⊢∷ Γ≡Δ ⊢t)
(Unitⱼ _ ok) _ →
Unitⱼ (wf-⊢≡ʳ Γ≡Δ) ok
(starⱼ _ ok) _ →
starⱼ (wf-⊢≡ʳ Γ≡Δ) ok
(unitrecⱼ ⊢A ⊢t ⊢u ok) PE.refl →
unitrecⱼ (stability-⊢ (Γ≡Δ ∙⟨ Unitⱼ (wf-⊢≡ʳ Γ≡Δ) ok ⟩) ⊢A)
(stability-⊢∷ Γ≡Δ ⊢t) (stability-⊢∷ Γ≡Δ ⊢u) ok
(ℕⱼ _) _ →
ℕⱼ (wf-⊢≡ʳ Γ≡Δ)
(zeroⱼ _) _ →
zeroⱼ (wf-⊢≡ʳ Γ≡Δ)
(sucⱼ ⊢t) PE.refl →
sucⱼ (stability-⊢∷ Γ≡Δ ⊢t)
(natrecⱼ ⊢t ⊢u ⊢v) PE.refl →
let ⊢ℕ = ℕⱼ (wf-⊢≡ʳ Γ≡Δ)
_ , (⊢A , A<) = ∙⊢∷→⊢-<ˢ ⊢u
⊢A′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢ℕ ⟩) ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
in
natrecⱼ (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ (Γ≡Δ ∙⟨ ⊢ℕ ⟩ ∙⟨ ⊢A′ ⟩) ⊢u) (stability-⊢∷ Γ≡Δ ⊢v)
(Idⱼ ⊢A ⊢t ⊢u) PE.refl →
Idⱼ (stability-⊢∷ Γ≡Δ ⊢A) (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ Γ≡Δ ⊢u)
(rflⱼ ⊢t) PE.refl →
rflⱼ (stability-⊢∷ Γ≡Δ ⊢t)
(Jⱼ ⊢t ⊢B ⊢u ⊢v ⊢w) PE.refl →
let _ , (⊢A , A<) , _ = ∙∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢t′ = stability-⊢∷ Γ≡Δ ⊢t
in
Jⱼ ⊢t′
(stability-⊢
(Γ≡Δ
∙⟨ ⊢A′ ⟩
∙⟨ Idⱼ (wk₁ ⊢A′ ⊢A′) (wkTerm₁ ⊢A′ ⊢t′) (var₀ ⊢A′) ⟩)
⊢B)
(stability-⊢∷ Γ≡Δ ⊢u) (stability-⊢∷ Γ≡Δ ⊢v)
(stability-⊢∷ Γ≡Δ ⊢w)
(Kⱼ ⊢B ⊢u ⊢v ok) PE.refl →
let _ , ⊢Id = ∙⊢→⊢-<ˢ ⊢B
(⊢A , A<) , (⊢t , t<) , _ = inversion-Id-⊢-<ˢ ⊢Id
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢t′ = stability-⊢∷ Γ≡Δ ⊢t
⦃ lt = <ˢ-trans t< ! ⦄
in
Kⱼ (stability-⊢ (Γ≡Δ ∙⟨ Idⱼ ⊢A′ ⊢t′ ⊢t′ ⟩) ⊢B)
(stability-⊢∷ Γ≡Δ ⊢u) (stability-⊢∷ Γ≡Δ ⊢v) ok
([]-congⱼ ⊢A ⊢t ⊢u ⊢v ok) PE.refl →
[]-congⱼ (stability-⊢ Γ≡Δ ⊢A) (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ Γ≡Δ ⊢u) (stability-⊢∷ Γ≡Δ ⊢v) ok
opaque
unfolding size-⊢≡∷
stability-⊢≡∷′ :
(∀ {s₁} → s₁ <ˢ s₂ → P s₁) →
⊢ Γ ≡ Δ →
(t≡u : Γ ⊢ t ≡ u ∷ A) →
size-⊢≡∷ t≡u PE.≡ s₂ →
Δ ⊢ t ≡ u ∷ A
stability-⊢≡∷′ hyp Γ≡Δ = let open Variants hyp in λ where
(refl ⊢t) PE.refl →
refl (stability-⊢∷ Γ≡Δ ⊢t)
(sym ⊢A t₂≡t₁) PE.refl →
sym (stability-⊢ Γ≡Δ ⊢A) (stability-⊢≡∷ Γ≡Δ t₂≡t₁)
(trans t₁≡t₂ t₂≡t₃) PE.refl →
trans (stability-⊢≡∷ Γ≡Δ t₁≡t₂) (stability-⊢≡∷ Γ≡Δ t₂≡t₃)
(conv t₁≡t₂ B≡A) PE.refl →
conv (stability-⊢≡∷ Γ≡Δ t₁≡t₂) (stability-⊢≡ Γ≡Δ B≡A)
(ΠΣ-cong A₁≡A₂ B₁≡B₂ ok) PE.refl →
let _ , (⊢A₁ , A₁<) = ∙⊢≡∷→⊢-<ˢ B₁≡B₂
⊢A₁′ = stability-⊢ Γ≡Δ ⊢A₁
⦃ lt = <ˢ-trans A₁< ! ⦄
in
ΠΣ-cong (stability-⊢≡∷ Γ≡Δ A₁≡A₂)
(stability-⊢≡∷ (Γ≡Δ ∙⟨ ⊢A₁′ ⟩) B₁≡B₂) ok
(app-cong t₁≡t₂ u₁≡u₂) PE.refl →
app-cong (stability-⊢≡∷ Γ≡Δ t₁≡t₂) (stability-⊢≡∷ Γ≡Δ u₁≡u₂)
(β-red ⊢B ⊢t ⊢u eq ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
β-red (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B)
(stability-⊢∷ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢t) (stability-⊢∷ Γ≡Δ ⊢u) eq ok
(η-eq ⊢B ⊢t₁ ⊢t₂ t₁0≡t₂0 ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢≡∷→⊢-<ˢ t₁0≡t₂0
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
Γ∙A≡Δ∙A = Γ≡Δ ∙⟨ ⊢A′ ⟩
in
η-eq (stability-⊢ Γ∙A≡Δ∙A ⊢B) (stability-⊢∷ Γ≡Δ ⊢t₁)
(stability-⊢∷ Γ≡Δ ⊢t₂) (stability-⊢≡∷ Γ∙A≡Δ∙A t₁0≡t₂0) ok
(fst-cong ⊢B t₁≡t₂) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
fst-cong (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B)
(stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(snd-cong ⊢B t₁≡t₂) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
snd-cong (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B)
(stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(Σ-β₁ ⊢B ⊢t₁ ⊢t₂ eq ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
Σ-β₁ (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) (stability-⊢∷ Γ≡Δ ⊢t₁)
(stability-⊢∷ Γ≡Δ ⊢t₂) eq ok
(Σ-β₂ ⊢B ⊢t₁ ⊢t₂ eq ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
Σ-β₂ (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) (stability-⊢∷ Γ≡Δ ⊢t₁)
(stability-⊢∷ Γ≡Δ ⊢t₂) eq ok
(Σ-η ⊢B ⊢t₁ ⊢t₂ fst-t₁≡fst-t₂ snd-t₁≡snd-t₂ ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
Σ-η (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B) (stability-⊢∷ Γ≡Δ ⊢t₁)
(stability-⊢∷ Γ≡Δ ⊢t₂) (stability-⊢≡∷ Γ≡Δ fst-t₁≡fst-t₂)
(stability-⊢≡∷ Γ≡Δ snd-t₁≡snd-t₂) ok
(prod-cong ⊢B t₁≡t₂ u₁≡u₂ ok) PE.refl →
let _ , (⊢A , A<) = ∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A ⦃ lt = <ˢ-trans A< ! ⦄
in
prod-cong (stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B)
(stability-⊢≡∷ Γ≡Δ t₁≡t₂) (stability-⊢≡∷ Γ≡Δ u₁≡u₂) ok
(prodrec-cong C₁≡C₂ t₁≡t₂ u₁≡u₂ ok) PE.refl →
let _ , (⊢A , A<) , (⊢B , B<) = ∙∙⊢≡∷→⊢-<ˢ u₁≡u₂
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢B′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B
⦃ lt = <ˢ-trans B< ! ⦄
in
prodrec-cong (stability-⊢≡ (Γ≡Δ ∙⟨ ΠΣⱼ ⊢B′ ok ⟩) C₁≡C₂)
(stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(stability-⊢≡∷ (Γ≡Δ ∙⟨ ⊢A′ ⟩ ∙⟨ ⊢B′ ⟩) u₁≡u₂) ok
(prodrec-β ⊢C ⊢t ⊢u ⊢v eq ok) PE.refl →
let _ , (⊢A , A<) , (⊢B , B<) = ∙∙⊢∷→⊢-<ˢ ⊢v
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢B′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢A′ ⟩) ⊢B
⦃ lt = <ˢ-trans B< ! ⦄
in
prodrec-β (stability-⊢ (Γ≡Δ ∙⟨ ΠΣⱼ ⊢B′ ok ⟩) ⊢C)
(stability-⊢∷ Γ≡Δ ⊢t) (stability-⊢∷ Γ≡Δ ⊢u)
(stability-⊢∷ (Γ≡Δ ∙⟨ ⊢A′ ⟩ ∙⟨ ⊢B′ ⟩) ⊢v) eq ok
(emptyrec-cong A₁≡A₂ t₁≡t₂) PE.refl →
emptyrec-cong (stability-⊢≡ Γ≡Δ A₁≡A₂) (stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(unitrec-cong A₁≡A₂ t₁≡t₂ u₁≡u₂ ok no-η) PE.refl →
unitrec-cong
(stability-⊢≡ (Γ≡Δ ∙⟨ Unitⱼ (wf-⊢≡ʳ Γ≡Δ) ok ⟩) A₁≡A₂)
(stability-⊢≡∷ Γ≡Δ t₁≡t₂) (stability-⊢≡∷ Γ≡Δ u₁≡u₂) ok no-η
(unitrec-β ⊢A ⊢t ok no-η) PE.refl →
unitrec-β (stability-⊢ (Γ≡Δ ∙⟨ Unitⱼ (wf-⊢≡ʳ Γ≡Δ) ok ⟩) ⊢A)
(stability-⊢∷ Γ≡Δ ⊢t) ok no-η
(unitrec-β-η ⊢A ⊢t ⊢u ok no-η) PE.refl →
unitrec-β-η (stability-⊢ (Γ≡Δ ∙⟨ Unitⱼ (wf-⊢≡ʳ Γ≡Δ) ok ⟩) ⊢A)
(stability-⊢∷ Γ≡Δ ⊢t) (stability-⊢∷ Γ≡Δ ⊢u) ok no-η
(η-unit ⊢t₁ ⊢t₂ η) PE.refl →
η-unit (stability-⊢∷ Γ≡Δ ⊢t₁) (stability-⊢∷ Γ≡Δ ⊢t₂) η
(suc-cong t₁≡t₂) PE.refl →
suc-cong (stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(natrec-cong A₁≡A₂ t₁≡t₂ u₁≡u₂ v₁≡v₂) PE.refl →
let ⊢ℕ = ℕⱼ (wf-⊢≡ʳ Γ≡Δ)
_ , (⊢A₁ , A₁<) = ∙⊢≡∷→⊢-<ˢ u₁≡u₂
⊢A₁′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢ℕ ⟩) ⊢A₁
⦃ lt = <ˢ-trans A₁< ! ⦄
in
natrec-cong (stability-⊢≡ (Γ≡Δ ∙⟨ ⊢ℕ ⟩) A₁≡A₂)
(stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(stability-⊢≡∷ (Γ≡Δ ∙⟨ ⊢ℕ ⟩ ∙⟨ ⊢A₁′ ⟩) u₁≡u₂)
(stability-⊢≡∷ Γ≡Δ v₁≡v₂)
(natrec-zero ⊢t ⊢u) PE.refl →
let ⊢ℕ = ℕⱼ (wf-⊢≡ʳ Γ≡Δ)
_ , (⊢A , A<) = ∙⊢∷→⊢-<ˢ ⊢u
⊢A′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢ℕ ⟩) ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
in
natrec-zero (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ (Γ≡Δ ∙⟨ ⊢ℕ ⟩ ∙⟨ ⊢A′ ⟩) ⊢u)
(natrec-suc ⊢t ⊢u ⊢v) PE.refl →
let ⊢ℕ = ℕⱼ (wf-⊢≡ʳ Γ≡Δ)
_ , (⊢A , A<) = ∙⊢∷→⊢-<ˢ ⊢u
⊢A′ = stability-⊢ (Γ≡Δ ∙⟨ ⊢ℕ ⟩) ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
in
natrec-suc (stability-⊢∷ Γ≡Δ ⊢t)
(stability-⊢∷ (Γ≡Δ ∙⟨ ⊢ℕ ⟩ ∙⟨ ⊢A′ ⟩) ⊢u) (stability-⊢∷ Γ≡Δ ⊢v)
(Id-cong A₁≡A₂ t₁≡t₂ u₁≡u₂) PE.refl →
Id-cong (stability-⊢≡∷ Γ≡Δ A₁≡A₂) (stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(stability-⊢≡∷ Γ≡Δ u₁≡u₂)
(J-cong A₁≡A₂ ⊢t₁ t₁≡t₂ B₁≡B₂ u₁≡u₂ v₁≡v₂ w₁≡w₂) PE.refl →
let _ , (⊢A₁ , A₁<) , _ = ∙∙⊢≡→⊢-<ˢ B₁≡B₂
⊢A₁′ = stability-⊢ Γ≡Δ ⊢A₁
⦃ lt = <ˢ-trans A₁< ! ⦄
⊢t₁′ = stability-⊢∷ Γ≡Δ ⊢t₁
in
J-cong (stability-⊢≡ Γ≡Δ A₁≡A₂) ⊢t₁′
(stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(stability-⊢≡
(Γ≡Δ
∙⟨ ⊢A₁′ ⟩
∙⟨ Idⱼ (wk₁ ⊢A₁′ ⊢A₁′) (wkTerm₁ ⊢A₁′ ⊢t₁′)
(var₀ ⊢A₁′) ⟩)
B₁≡B₂)
(stability-⊢≡∷ Γ≡Δ u₁≡u₂) (stability-⊢≡∷ Γ≡Δ v₁≡v₂)
(stability-⊢≡∷ Γ≡Δ w₁≡w₂)
(J-β ⊢t ⊢B ⊢u eq) PE.refl →
let _ , (⊢A , A<) , _ = ∙∙⊢→⊢-<ˢ ⊢B
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢t′ = stability-⊢∷ Γ≡Δ ⊢t
in
J-β ⊢t′
(stability-⊢
(Γ≡Δ
∙⟨ ⊢A′ ⟩
∙⟨ Idⱼ (wk₁ ⊢A′ ⊢A′) (wkTerm₁ ⊢A′ ⊢t′) (var₀ ⊢A′) ⟩)
⊢B)
(stability-⊢∷ Γ≡Δ ⊢u) eq
(K-cong A₁≡A₂ t₁≡t₂ B₁≡B₂ u₁≡u₂ v₁≡v₂ ok) PE.refl →
let _ , ⊢Id = ∙⊢≡→⊢-<ˢ B₁≡B₂
(⊢A₁ , A₁<) , (⊢t₁ , t₁<) , _ = inversion-Id-⊢-<ˢ ⊢Id
⊢A₁′ = stability-⊢ Γ≡Δ ⊢A₁
⦃ lt = <ˢ-trans A₁< ! ⦄
⊢t₁′ = stability-⊢∷ Γ≡Δ ⊢t₁
⦃ lt = <ˢ-trans t₁< ! ⦄
in
K-cong (stability-⊢≡ Γ≡Δ A₁≡A₂) (stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(stability-⊢≡ (Γ≡Δ ∙⟨ Idⱼ ⊢A₁′ ⊢t₁′ ⊢t₁′ ⟩) B₁≡B₂)
(stability-⊢≡∷ Γ≡Δ u₁≡u₂) (stability-⊢≡∷ Γ≡Δ v₁≡v₂) ok
(K-β ⊢B ⊢u ok) PE.refl →
let _ , ⊢Id = ∙⊢→⊢-<ˢ ⊢B
(⊢A , A<) , (⊢t , t<) , _ = inversion-Id-⊢-<ˢ ⊢Id
⊢A′ = stability-⊢ Γ≡Δ ⊢A
⦃ lt = <ˢ-trans A< ! ⦄
⊢t′ = stability-⊢∷ Γ≡Δ ⊢t
⦃ lt = <ˢ-trans t< ! ⦄
in
K-β (stability-⊢ (Γ≡Δ ∙⟨ Idⱼ ⊢A′ ⊢t′ ⊢t′ ⟩) ⊢B)
(stability-⊢∷ Γ≡Δ ⊢u) ok
([]-cong-cong A₁≡A₂ t₁≡t₂ u₁≡u₂ v₁≡v₂ ok) PE.refl →
[]-cong-cong (stability-⊢≡ Γ≡Δ A₁≡A₂) (stability-⊢≡∷ Γ≡Δ t₁≡t₂)
(stability-⊢≡∷ Γ≡Δ u₁≡u₂) (stability-⊢≡∷ Γ≡Δ v₁≡v₂) ok
([]-cong-β ⊢t eq ok) PE.refl →
[]-cong-β (stability-⊢∷ Γ≡Δ ⊢t) eq ok
(equality-reflection ok ⊢Id ⊢v) PE.refl →
equality-reflection ok (stability-⊢ Γ≡Δ ⊢Id)
(stability-⊢∷ Γ≡Δ ⊢v)
opaque
P-inhabited : P s
P-inhabited =
well-founded-induction P
(λ _ hyp →
record
{ stability-⊢ = stability-⊢′ hyp
; stability-⊢≡ = stability-⊢≡′ hyp
; stability-⊢∷ = stability-⊢∷′ hyp
; stability-⊢≡∷ = stability-⊢≡∷′ hyp
})
_
opaque
stability-⊢ : ⊢ Γ ≡ Δ → Γ ⊢ A → Δ ⊢ A
stability-⊢ Γ≡Δ ⊢A =
P.stability-⊢ Inhabited.P-inhabited Γ≡Δ ⊢A PE.refl
opaque
stability-⊢≡ : ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B → Δ ⊢ A ≡ B
stability-⊢≡ Γ≡Δ A≡B =
P.stability-⊢≡ Inhabited.P-inhabited Γ≡Δ A≡B PE.refl
opaque
stability-⊢∷ : ⊢ Γ ≡ Δ → Γ ⊢ t ∷ A → Δ ⊢ t ∷ A
stability-⊢∷ Γ≡Δ ⊢t =
P.stability-⊢∷ Inhabited.P-inhabited Γ≡Δ ⊢t PE.refl
opaque
stability-⊢≡∷ : ⊢ Γ ≡ Δ → Γ ⊢ t ≡ u ∷ A → Δ ⊢ t ≡ u ∷ A
stability-⊢≡∷ Γ≡Δ t≡u =
P.stability-⊢≡∷ Inhabited.P-inhabited Γ≡Δ t≡u PE.refl