open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.LogicalRelation.Hidden.Restricted
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
⦃ eqrel : EqRelSet R ⦄
where
open EqRelSet eqrel
open Type-restrictions R
import Definition.LogicalRelation R as L
import Definition.LogicalRelation.Hidden R as H
open import Definition.LogicalRelation.Weakening.Restricted R
open import Definition.Typed R
open import Definition.Typed.Properties R
open import Definition.Typed.Weakening R using (_∷ʷ_⊇_)
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties.Neutral M type-variant
open import Tools.Function
open import Tools.Nat using (Nat)
open import Tools.Product
import Tools.PropositionalEquality as PE
private variable
n : Nat
Γ Δ : Con Term _
A B C t t₁ t₂ u v : Term _
ρ : Wk _ _
l l′ : Universe-level
opaque
infix 4 _⊩⟨_⟩_
_⊩⟨_⟩_ : Con Term n → Universe-level → Term n → Set a
Γ ⊩⟨ l ⟩ A =
⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ L.⊩⟨ l ⟩ A
opaque
infix 4 _⊩⟨_⟩_∷_
_⊩⟨_⟩_∷_ : Con Term n → Universe-level → Term n → Term n → Set a
Γ ⊩⟨ l ⟩ t ∷ A =
⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ t ∷ A
opaque
infix 4 _⊩⟨_⟩_≡_
_⊩⟨_⟩_≡_ : Con Term n → Universe-level → Term n → Term n → Set a
Γ ⊩⟨ l ⟩ A ≡ B =
⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ A ≡ B
opaque
infix 4 _⊩⟨_⟩_≡_∷_
_⊩⟨_⟩_≡_∷_ :
Con Term n → Universe-level → Term n → Term n → Term n → Set a
Γ ⊩⟨ l ⟩ t ≡ u ∷ A =
⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ t ≡ u ∷ A
opaque
unfolding _⊩⟨_⟩_
⊩⇔ :
Γ ⊩⟨ l ⟩ A ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ L.⊩⟨ l ⟩ A)
⊩⇔ = id⇔
opaque
unfolding _⊩⟨_⟩_∷_
⊩∷⇔ :
Γ ⊩⟨ l ⟩ t ∷ A ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ t ∷ A)
⊩∷⇔ = id⇔
opaque
unfolding _⊩⟨_⟩_≡_
⊩≡⇔ :
Γ ⊩⟨ l ⟩ A ≡ B ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ A ≡ B)
⊩≡⇔ = id⇔
opaque
unfolding _⊩⟨_⟩_≡_∷_
⊩≡∷⇔ :
Γ ⊩⟨ l ⟩ t ≡ u ∷ A ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ t ≡ u ∷ A)
⊩≡∷⇔ = id⇔
opaque
→⊩ : Γ L.⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ A
→⊩ ⊩A = ⊩⇔ .proj₂ ⊩A
opaque
⊩→ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ A → Γ L.⊩⟨ l ⟩ A
⊩→ ⊩A = ⊩⇔ .proj₁ ⊩A
opaque
→⊩∷ : Γ H.⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ t ∷ A
→⊩∷ ⊩t = ⊩∷⇔ .proj₂ ⊩t
opaque
⊩∷→ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ t ∷ A → Γ H.⊩⟨ l ⟩ t ∷ A
⊩∷→ ⊩t = ⊩∷⇔ .proj₁ ⊩t
opaque
→⊩≡ : Γ H.⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ B
→⊩≡ A≡B = ⊩≡⇔ .proj₂ A≡B
opaque
⊩≡→ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ A ≡ B → Γ H.⊩⟨ l ⟩ A ≡ B
⊩≡→ A≡B = ⊩≡⇔ .proj₁ A≡B
opaque
→⊩≡∷ : Γ H.⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
→⊩≡∷ t≡u = ⊩≡∷⇔ .proj₂ t≡u
opaque
⊩≡∷→ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ H.⊩⟨ l ⟩ t ≡ u ∷ A
⊩≡∷→ t≡u = ⊩≡∷⇔ .proj₁ t≡u
opaque
unfolding _⊩⟨_⟩_
with-inc-⊩ :
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ A
with-inc-⊩ f ⦃ inc ⦄ = f ⦃ inc = inc ⦄ ⦃ inc = inc ⦄
opaque
unfolding _⊩⟨_⟩_∷_
with-inc-⊩∷ :
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊩⟨ l ⟩ t ∷ A) →
Γ ⊩⟨ l ⟩ t ∷ A
with-inc-⊩∷ f ⦃ inc ⦄ = f ⦃ inc = inc ⦄ ⦃ inc = inc ⦄
opaque
unfolding _⊩⟨_⟩_≡_
with-inc-⊩≡ :
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊩⟨ l ⟩ A ≡ B) →
Γ ⊩⟨ l ⟩ A ≡ B
with-inc-⊩≡ f ⦃ inc ⦄ = f ⦃ inc = inc ⦄ ⦃ inc = inc ⦄
opaque
unfolding _⊩⟨_⟩_≡_∷_
with-inc-⊩≡∷ :
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊩⟨ l ⟩ t ≡ u ∷ A) →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
with-inc-⊩≡∷ f ⦃ inc ⦄ = f ⦃ inc = inc ⦄ ⦃ inc = inc ⦄
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
refl-⊩≡ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l ⟩ A ≡ A
refl-⊩≡ ⊩A = H.refl-⊩≡ ⊩A
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
refl-⊩≡∷ :
Γ ⊩⟨ l ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ≡ t ∷ A
refl-⊩≡∷ ⊩t = H.refl-⊩≡∷ ⊩t
opaque
unfolding _⊩⟨_⟩_≡_
sym-⊩≡ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l ⟩ B ≡ A
sym-⊩≡ A≡B = H.sym-⊩≡ A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
sym-⊩≡∷ :
Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ u ≡ t ∷ A
sym-⊩≡∷ t≡u = H.sym-⊩≡∷ t≡u
opaque
unfolding _⊩⟨_⟩_≡_
trans-⊩≡ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l ⟩ B ≡ C →
Γ ⊩⟨ l ⟩ A ≡ C
trans-⊩≡ A≡B B≡C = H.trans-⊩≡ A≡B B≡C
opaque
unfolding _⊩⟨_⟩_≡_∷_
trans-⊩≡∷ :
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ u ≡ v ∷ A →
Γ ⊩⟨ l ⟩ t ≡ v ∷ A
trans-⊩≡∷ t≡u u≡v = H.trans-⊩≡∷ t≡u u≡v
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_∷_
wf-⊩∷ : Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ A
wf-⊩∷ ⊩t = H.wf-⊩∷ ⊩t
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
wf-⊩≡ : Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A × Γ ⊩⟨ l ⟩ B
wf-⊩≡ A≡B = H.wf-⊩≡ A≡B .proj₁ , H.wf-⊩≡ A≡B .proj₂
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
wf-⊩≡∷ :
Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A × Γ ⊩⟨ l ⟩ u ∷ A
wf-⊩≡∷ t≡u = H.wf-⊩≡∷ t≡u .proj₁ , H.wf-⊩≡∷ t≡u .proj₂
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
⊩⇔⊩≡ : (Γ ⊩⟨ l ⟩ A) ⇔ Γ ⊩⟨ l ⟩ A ≡ A
⊩⇔⊩≡ = instance-Π-cong-⇔ H.⊩⇔⊩≡
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
⊩∷⇔⊩≡∷ : Γ ⊩⟨ l ⟩ t ∷ A ⇔ Γ ⊩⟨ l ⟩ t ≡ t ∷ A
⊩∷⇔⊩≡∷ = instance-Π-cong-⇔ H.⊩∷⇔⊩≡∷
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
level-⊩≡ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l ⟩ B →
Γ ⊩⟨ l′ ⟩ A ≡ B →
Γ ⊩⟨ l ⟩ A ≡ B
level-⊩≡ ⊩A ⊩B A≡B = H.level-⊩≡ ⊩A ⊩B A≡B
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_∷_
level-⊩≡∷ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
level-⊩≡∷ ⊩A t≡u = H.level-⊩≡∷ ⊩A t≡u
opaque
level-⊩∷ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l′ ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A
level-⊩∷ ⊩A =
⊩∷⇔⊩≡∷ .proj₂ ∘→ level-⊩≡∷ ⊩A ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
unfolding _⊩⟨_⟩_≡_ _⊩⟨_⟩_≡_∷_
conv-⊩≡∷ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ B
conv-⊩≡∷ A≡B t≡u = H.conv-⊩≡∷ A≡B t≡u
opaque
conv-⊩∷ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l′ ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ∷ B
conv-⊩∷ A≡B =
⊩∷⇔⊩≡∷ .proj₂ ∘→ conv-⊩≡∷ A≡B ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
unfolding _⊩⟨_⟩_≡_
wk-⊩≡ : ρ ∷ʷ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ A ≡ B → Δ ⊩⟨ l ⟩ wk ρ A ≡ wk ρ B
wk-⊩≡ Δ⊇Γ A≡B =
let Δ⊇Γ = ∷ʷ⊇→∷ʷʳ⊇ Δ⊇Γ in
H.wk-⊩≡ Δ⊇Γ $ A≡B ⦃ inc = wk-Neutrals-included-or-empty→ Δ⊇Γ ⦄
opaque
wk-⊩ : ρ ∷ʷ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ A → Δ ⊩⟨ l ⟩ wk ρ A
wk-⊩ Δ⊇Γ = ⊩⇔⊩≡ .proj₂ ∘→ wk-⊩≡ Δ⊇Γ ∘→ ⊩⇔⊩≡ .proj₁
opaque
unfolding _⊩⟨_⟩_≡_∷_
wk-⊩≡∷ :
ρ ∷ʷ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Δ ⊩⟨ l ⟩ wk ρ t ≡ wk ρ u ∷ wk ρ A
wk-⊩≡∷ Δ⊇Γ t≡u =
let Δ⊇Γ = ∷ʷ⊇→∷ʷʳ⊇ Δ⊇Γ in
H.wk-⊩≡∷ Δ⊇Γ $ t≡u ⦃ inc = wk-Neutrals-included-or-empty→ Δ⊇Γ ⦄
opaque
wk-⊩∷ : ρ ∷ʷ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ t ∷ A → Δ ⊩⟨ l ⟩ wk ρ t ∷ wk ρ A
wk-⊩∷ Δ⊇Γ = ⊩∷⇔⊩≡∷ .proj₂ ∘→ wk-⊩≡∷ Δ⊇Γ ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
⊩-⇒* : Γ ⊢ A ⇒* B → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ A ≡ B
⊩-⇒* A⇒*B ⊩A = H.⊩-⇒* A⇒*B ⊩A
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
⊩∷-⇒* :
Γ ⊢ t ⇒* u ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
⊩∷-⇒* t⇒*u ⊩t = H.⊩∷-⇒* t⇒*u ⊩t
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
⊩-⇐* : Γ ⊢ A ⇒* B → Γ ⊩⟨ l ⟩ B → Γ ⊩⟨ l ⟩ A ≡ B
⊩-⇐* A⇒*B ⊩B = H.⊩-⇐* A⇒*B ⊩B
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
⊩∷-⇐* :
Γ ⊢ t ⇒* u ∷ A →
Γ ⊩⟨ l ⟩ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
⊩∷-⇐* t⇒*u ⊩u = H.⊩∷-⇐* t⇒*u ⊩u
opaque
unfolding _⊩⟨_⟩_
escape-⊩ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ A → Γ ⊢ A
escape-⊩ ⊩A = H.escape-⊩ ⊩A
opaque
unfolding _⊩⟨_⟩_∷_
escape-⊩∷ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊢ t ∷ A
escape-⊩∷ ⊩t = H.escape-⊩∷ ⊩t
opaque
unfolding _⊩⟨_⟩_≡_
escape-⊩≡ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊢ A ≅ B
escape-⊩≡ A≡B = H.escape-⊩≡ A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
escape-⊩≡∷ :
⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊢ t ≅ u ∷ A
escape-⊩≡∷ t≡u = H.escape-⊩≡∷ t≡u
opaque
infix -1
_∎⟨_⟩⊩ finally-⊩≡ finally-⊩≡˘
infixr -2
step-⊩≡ step-⊩≡˘ step-⊩≡≡ step-⊩≡≡˘ step-⊩≡⇒* step-⊩≡⇒ step-⊩≡⇐*
step-⊩≡⇐ _≡⟨⟩⊩_ finally-⊩≡≡ finally-⊩≡≡˘ finally-⊩≡⇐* finally-⊩≡⇒*
step-⊩≡ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡ _ = flip trans-⊩≡
syntax step-⊩≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩ B≡C
step-⊩≡˘ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡˘ _ B≡C B≡A = trans-⊩≡ (sym-⊩≡ B≡A) B≡C
syntax step-⊩≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩ B≡C
step-⊩≡≡ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → A PE.≡ B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡≡ _ B≡C PE.refl = B≡C
syntax step-⊩≡≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩≡ B≡C
step-⊩≡≡˘ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → B PE.≡ A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡≡˘ _ B≡C PE.refl = B≡C
syntax step-⊩≡≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩≡ B≡C
step-⊩≡⇒* : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ A ⇒* B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇒* _ B≡C A⇒*B =
trans-⊩≡ (⊩-⇐* A⇒*B (wf-⊩≡ B≡C .proj₁)) B≡C
syntax step-⊩≡⇒* A B≡C A⇒*B = A ⇒*⟨ A⇒*B ⟩⊩ B≡C
step-⊩≡⇒ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ A ⇒ B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇒ _ B≡C = step-⊩≡⇒* _ B≡C ∘→ redMany-⊢
syntax step-⊩≡⇒ A B≡C A⇒B = A ⇒⟨ A⇒B ⟩⊩ B≡C
step-⊩≡⇐* : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ B ⇒* A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇐* _ B≡C B⇒*A =
trans-⊩≡ (sym-⊩≡ (⊩-⇒* B⇒*A (wf-⊩≡ B≡C .proj₁))) B≡C
syntax step-⊩≡⇐* A B≡C B⇒*A = A ⇐*⟨ B⇒*A ⟩⊩ B≡C
step-⊩≡⇐ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ B ⇒ A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇐ _ B≡C = step-⊩≡⇐* _ B≡C ∘→ redMany-⊢
syntax step-⊩≡⇐ A B≡C B⇒A = A ⇐⟨ B⇒A ⟩⊩ B≡C
_≡⟨⟩⊩_ : ∀ A → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ B
_ ≡⟨⟩⊩ A≡B = A≡B
_∎⟨_⟩⊩ : ∀ A → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ A ≡ A
_ ∎⟨ ⊩A ⟩⊩ = refl-⊩≡ ⊩A
finally-⊩≡ : ∀ A B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ B
finally-⊩≡ _ _ A≡B = A≡B
syntax finally-⊩≡ A B A≡B = A ≡⟨ A≡B ⟩⊩∎ B ∎
finally-⊩≡˘ : ∀ A B → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ A ≡ B
finally-⊩≡˘ _ _ A≡B = sym-⊩≡ A≡B
syntax finally-⊩≡˘ A B B≡A = A ≡˘⟨ B≡A ⟩⊩∎ B ∎
finally-⊩≡≡ : ∀ A → B PE.≡ C → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡≡ _ PE.refl A≡B = A≡B
syntax finally-⊩≡≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩∎≡ B≡C
finally-⊩≡≡˘ : ∀ A → B PE.≡ C → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡≡˘ _ PE.refl B≡A = sym-⊩≡ B≡A
syntax finally-⊩≡≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩∎≡ B≡C
finally-⊩≡⇐* :
∀ A → Γ ⊢ C ⇒* B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡⇐* _ C⇒*B A≡B =
trans-⊩≡ A≡B (sym-⊩≡ (⊩-⇐* C⇒*B (wf-⊩≡ A≡B .proj₂)))
syntax finally-⊩≡⇐* A C⇒*B A≡B = A ≡⟨ A≡B ⟩⊩⇐* C⇒*B
finally-⊩≡⇒* : ∀ A → Γ ⊢ B ⇒* C → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡⇒* _ B⇒*C A≡B =
case wf-⊩≡ A≡B of λ
(_ , ⊩B) →
trans-⊩≡ A≡B (⊩-⇒* B⇒*C ⊩B)
syntax finally-⊩≡⇒* A B⇒*C A≡B = A ≡⟨ A≡B ⟩⊩⇒* B⇒*C
opaque
infix -1
_∎⟨_⟩⊩∷ finally-⊩≡∷ finally-⊩≡∷˘
infix -2
step-⊩≡∷-conv step-⊩≡∷-conv˘ step-⊩≡∷-conv-≡ step-⊩≡∷-conv-≡˘
infixr -2
step-⊩≡∷ step-⊩≡∷˘ step-⊩≡∷≡ step-⊩≡∷≡˘ step-⊩≡∷⇒* step-⊩≡∷⇒
step-⊩≡∷⇐* step-⊩≡∷⇐ _≡⟨⟩⊩∷_ finally-⊩≡∷≡ finally-⊩≡∷≡˘
finally-⊩≡∷⇐* finally-⊩≡∷⇒*
step-⊩≡∷ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷ _ = flip trans-⊩≡∷
syntax step-⊩≡∷ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷ u≡v
step-⊩≡∷˘ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷˘ _ u≡v u≡t = trans-⊩≡∷ (sym-⊩≡∷ u≡t) u≡v
syntax step-⊩≡∷˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷ u≡v
step-⊩≡∷≡ : ∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → t PE.≡ u → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷≡ _ u≡v PE.refl = u≡v
syntax step-⊩≡∷≡ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷≡ u≡v
step-⊩≡∷≡˘ : ∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → u PE.≡ t → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷≡˘ _ u≡v PE.refl = u≡v
syntax step-⊩≡∷≡˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷≡ u≡v
step-⊩≡∷⇒* :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇒* _ u≡v t⇒*u =
trans-⊩≡∷ (⊩∷-⇐* t⇒*u (wf-⊩≡∷ u≡v .proj₁)) u≡v
syntax step-⊩≡∷⇒* t u≡v t⇒*u = t ⇒*⟨ t⇒*u ⟩⊩∷ u≡v
step-⊩≡∷⇒ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇒ _ u≡v = step-⊩≡∷⇒* _ u≡v ∘→ redMany
syntax step-⊩≡∷⇒ t u≡v t⇒u = t ⇒⟨ t⇒u ⟩⊩∷ u≡v
step-⊩≡∷⇐* :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒* t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇐* _ u≡v u⇒*t =
trans-⊩≡∷ (sym-⊩≡∷ (⊩∷-⇒* u⇒*t (wf-⊩≡∷ u≡v .proj₁))) u≡v
syntax step-⊩≡∷⇐* t u≡v u⇒*t = t ⇐*⟨ u⇒*t ⟩⊩∷ u≡v
step-⊩≡∷⇐ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇐ _ u≡v = step-⊩≡∷⇐* _ u≡v ∘→ redMany
syntax step-⊩≡∷⇐ t u≡v u⇒t = t ⇐⟨ u⇒t ⟩⊩∷ u≡v
_≡⟨⟩⊩∷_ : ∀ t → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
_ ≡⟨⟩⊩∷ t≡u = t≡u
step-⊩≡∷-conv :
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv t≡u A≡B = conv-⊩≡∷ (sym-⊩≡ A≡B) t≡u
syntax step-⊩≡∷-conv t≡u A≡B = ⟨ A≡B ⟩⊩∷ t≡u
step-⊩≡∷-conv˘ :
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv˘ t≡u B≡A = conv-⊩≡∷ B≡A t≡u
syntax step-⊩≡∷-conv˘ t≡u B≡A = ˘⟨ B≡A ⟩⊩∷ t≡u
step-⊩≡∷-conv-≡ : Γ ⊩⟨ l ⟩ t ≡ u ∷ B → A PE.≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv-≡ t≡u PE.refl = t≡u
syntax step-⊩≡∷-conv-≡ t≡u A≡B = ⟨ A≡B ⟩⊩∷≡ t≡u
step-⊩≡∷-conv-≡˘ : Γ ⊩⟨ l ⟩ t ≡ u ∷ B → B PE.≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv-≡˘ t≡u PE.refl = t≡u
syntax step-⊩≡∷-conv-≡˘ t≡u B≡A = ˘⟨ B≡A ⟩⊩∷≡ t≡u
_∎⟨_⟩⊩∷ : ∀ t → Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ t ∷ A
_ ∎⟨ ⊩t ⟩⊩∷ = refl-⊩≡∷ ⊩t
finally-⊩≡∷ : ∀ t u → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷ _ _ t≡u = t≡u
syntax finally-⊩≡∷ t u t≡u = t ≡⟨ t≡u ⟩⊩∷∎ u ∎
finally-⊩≡∷˘ : ∀ t u → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷˘ _ _ t≡u = sym-⊩≡∷ t≡u
syntax finally-⊩≡∷˘ t u u≡t = t ≡˘⟨ u≡t ⟩⊩∷∎ u ∎
finally-⊩≡∷≡ :
∀ t → u PE.≡ v → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷≡ _ PE.refl t≡u = t≡u
syntax finally-⊩≡∷≡ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷∎≡ u≡v
finally-⊩≡∷≡˘ :
∀ t → u PE.≡ v → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷≡˘ _ PE.refl u≡t = sym-⊩≡∷ u≡t
syntax finally-⊩≡∷≡˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷∎≡ u≡v
finally-⊩≡∷⇐* :
∀ t → Γ ⊢ v ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷⇐* _ v⇒*u t≡u =
trans-⊩≡∷ t≡u (sym-⊩≡∷ (⊩∷-⇐* v⇒*u (wf-⊩≡∷ t≡u .proj₂)))
syntax finally-⊩≡∷⇐* t v⇒*u t≡u = t ≡⟨ t≡u ⟩⊩∷⇐* v⇒*u
finally-⊩≡∷⇒* :
∀ t → Γ ⊢ u ⇒* v ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷⇒* _ u⇒*v t≡u =
case wf-⊩≡∷ t≡u of λ
(_ , ⊩u) →
trans-⊩≡∷ t≡u (⊩∷-⇒* u⇒*v ⊩u)
syntax finally-⊩≡∷⇒* t u⇒*v t≡u = t ≡⟨ t≡u ⟩⊩∷⇒* u⇒*v
opaque
infix -1
_∷_∎⟨_⟩⊩∷∷ finally-⊩≡∷∷ finally-⊩≡∷∷˘
infix -2
step-⊩≡∷∷-conv step-⊩≡∷∷-conv˘ step-⊩≡∷∷-conv-≡ step-⊩≡∷∷-conv-≡˘
infixr -2
step-⊩≡∷∷ step-⊩≡∷∷˘ step-⊩≡∷∷≡ step-⊩≡∷∷≡˘ step-⊩≡∷∷⇒* step-⊩≡∷∷⇒
step-⊩≡∷∷⇐* step-⊩≡∷∷⇐ _∷_≡⟨⟩⊩∷∷_ finally-⊩≡∷∷≡ finally-⊩≡∷∷≡˘
finally-⊩≡∷∷⇐* finally-⊩≡∷∷⇒*
step-⊩≡∷∷ :
∀ t A →
Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷ _ _ = step-⊩≡∷ _
syntax step-⊩≡∷∷ t A u≡v t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷ u≡v
step-⊩≡∷∷˘ :
∀ t A →
Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷˘ _ _ = step-⊩≡∷˘ _
syntax step-⊩≡∷∷˘ t A u≡v u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∷ u≡v
step-⊩≡∷∷≡ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → t PE.≡ u → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷≡ _ _ = step-⊩≡∷≡ _
syntax step-⊩≡∷∷≡ t A u≡v t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷≡ u≡v
step-⊩≡∷∷≡˘ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → u PE.≡ t → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷≡˘ _ _ = step-⊩≡∷≡˘ _
syntax step-⊩≡∷∷≡˘ t A u≡v u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∷≡ u≡v
step-⊩≡∷∷⇒* :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇒* _ _ = step-⊩≡∷⇒* _
syntax step-⊩≡∷∷⇒* t A u≡v t⇒*u = t ∷ A ⇒*⟨ t⇒*u ⟩⊩∷∷ u≡v
step-⊩≡∷∷⇒ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇒ _ _ = step-⊩≡∷⇒ _
syntax step-⊩≡∷∷⇒ t A u≡v t⇒u = t ∷ A ⇒⟨ t⇒u ⟩⊩∷∷ u≡v
step-⊩≡∷∷⇐* :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒* t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇐* _ _ = step-⊩≡∷⇐* _
syntax step-⊩≡∷∷⇐* t A u≡v u⇒*t = t ∷ A ⇐*⟨ u⇒*t ⟩⊩∷∷ u≡v
step-⊩≡∷∷⇐ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇐ _ _ = step-⊩≡∷⇐ _
syntax step-⊩≡∷∷⇐ t A u≡v u⇒t ⊢t = t ∷ A ⇐⟨ u⇒t , ⊢t ⟩⊩∷∷ u≡v
_∷_≡⟨⟩⊩∷∷_ : ∀ t A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
_ ∷ _ ≡⟨⟩⊩∷∷ t≡u = t≡u
step-⊩≡∷∷-conv :
∀ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv _ = step-⊩≡∷-conv
syntax step-⊩≡∷∷-conv A t≡u A≡B = ∷ A ⟨ A≡B ⟩⊩∷∷ t≡u
step-⊩≡∷∷-conv˘ :
∀ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv˘ _ = step-⊩≡∷-conv˘
syntax step-⊩≡∷∷-conv˘ A t≡u B≡A = ∷ A ˘⟨ B≡A ⟩⊩∷∷ t≡u
step-⊩≡∷∷-conv-≡ :
∀ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ B → A PE.≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv-≡ _ = step-⊩≡∷-conv-≡
syntax step-⊩≡∷∷-conv-≡ A t≡u A≡B = ∷ A ⟨ A≡B ⟩⊩∷∷≡ t≡u
step-⊩≡∷∷-conv-≡˘ :
∀ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ B → B PE.≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv-≡˘ _ = step-⊩≡∷-conv-≡˘
syntax step-⊩≡∷∷-conv-≡˘ A t≡u B≡A = ∷ A ˘⟨ B≡A ⟩⊩∷∷≡ t≡u
_∷_∎⟨_⟩⊩∷∷ : ∀ t A → Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ t ∷ A
_ ∷ _ ∎⟨ ⊩t ⟩⊩∷∷ = refl-⊩≡∷ ⊩t
finally-⊩≡∷∷ : ∀ t A u → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷∷ _ _ _ t≡u = t≡u
syntax finally-⊩≡∷∷ t A u t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∎∷ u ∎
finally-⊩≡∷∷˘ : ∀ t A u → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷∷˘ _ _ _ t≡u = sym-⊩≡∷ t≡u
syntax finally-⊩≡∷∷˘ t A u u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∎∷ u ∎
finally-⊩≡∷∷≡ :
∀ t A → u PE.≡ v → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷≡ _ _ = finally-⊩≡∷≡ _
syntax finally-⊩≡∷∷≡ t A u≡v t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∎∷≡ u≡v
finally-⊩≡∷∷≡˘ :
∀ t A → u PE.≡ v → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷≡˘ _ _ = finally-⊩≡∷≡˘ _
syntax finally-⊩≡∷∷≡˘ t A u≡v u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∎∷≡ u≡v
finally-⊩≡∷∷⇐* :
∀ t A → Γ ⊢ v ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷⇐* _ _ = finally-⊩≡∷⇐* _
syntax finally-⊩≡∷∷⇐* t A v⇒*u t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷⇐* v⇒*u
finally-⊩≡∷∷⇒* :
∀ t A → Γ ⊢ u ⇒* v ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷⇒* _ _ = finally-⊩≡∷⇒* _
syntax finally-⊩≡∷∷⇒* t A v⇒*u t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷⇒* v⇒*u
opaque
unfolding _⊩⟨_⟩_
emb-⊩ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l′ ⟩ A
emb-⊩ p ⊩A = H.emb-⊩ p ⊩A
opaque
unfolding _⊩⟨_⟩_≡_
emb-⊩≡ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l′ ⟩ A ≡ B
emb-⊩≡ p A≡B = H.emb-⊩≡ p A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
emb-⊩≡∷ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A
emb-⊩≡∷ p t≡u = H.emb-⊩≡∷ p t≡u
opaque
unfolding _⊩⟨_⟩_∷_
emb-⊩∷ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ t ∷ A →
Γ ⊩⟨ l′ ⟩ t ∷ A
emb-⊩∷ p ⊩t = H.emb-⊩∷ p ⊩t
opaque
unfolding _⊩⟨_⟩_
neutral-⊩ :
Neutral A →
Γ ⊢≅ A →
Γ ⊩⟨ l ⟩ A
neutral-⊩ A-ne ≅A =
H.neutral-⊩ (or-empty-Neutral→ A-ne) A-ne ≅A
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_∷_
neutral-⊩∷ :
Γ ⊩⟨ l ⟩ A →
Neutral t →
Γ ⊢~ t ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A
neutral-⊩∷ ⊩A t-ne ~t =
H.neutral-⊩∷ (or-empty-Neutral→ t-ne) ⊩A t-ne ~t
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_
neutral-⊩≡ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l ⟩ B →
Neutral A →
Neutral B →
Γ ⊢ A ≅ B →
Γ ⊩⟨ l ⟩ A ≡ B
neutral-⊩≡ ⊩A ⊩B A-ne B-ne A≅B =
H.neutral-⊩≡ ⊩A ⊩B A-ne B-ne A≅B
opaque
unfolding _⊩⟨_⟩_ _⊩⟨_⟩_≡_∷_
neutral-⊩≡∷ :
Γ ⊩⟨ l ⟩ A →
Neutral t →
Neutral u →
Γ ⊢ t ~ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
neutral-⊩≡∷ ⊩A t-ne u-ne t~u =
H.neutral-⊩≡∷ (or-empty-Neutral→ t-ne) ⊩A t-ne u-ne t~u
opaque
⊩ne⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ A ⇔ (⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊢≅ A)
⊩ne⇔ {A} {Γ} {l} A-ne =
Γ ⊩⟨ l ⟩ A ⇔⟨ ⊩⇔ ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ L.⊩⟨ l ⟩ A) ⇔⟨ instance-Π-cong-⇔ $ H.⊩ne⇔ A-ne ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Neutrals-included × Γ ⊢≅ A) ⇔⟨ instance-Π-cong-⇔ $
proj₂
, (or-empty-Neutral→ A-ne ,_)
⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊢≅ A) □⇔
opaque
⊩∷ne⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ t ∷ A ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊢≅ A × ∃ λ u → Γ ⊢ t ⇒* u ∷ A × Neutral u × Γ ⊢~ u ∷ A)
⊩∷ne⇔ {A} {Γ} {l} {t} A-ne =
Γ ⊩⟨ l ⟩ t ∷ A ⇔⟨ ⊩∷⇔ ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ t ∷ A) ⇔⟨ instance-Π-cong-⇔ $ H.⊩∷ne⇔ A-ne ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Neutrals-included × Γ ⊢≅ A ×
∃ λ u → Γ ⊢ t ⇒* u ∷ A × Neutral u × Γ ⊢~ u ∷ A) ⇔⟨ instance-Π-cong-⇔ $
proj₂
, (or-empty-Neutral→ A-ne ,_)
⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊢≅ A × ∃ λ u → Γ ⊢ t ⇒* u ∷ A × Neutral u × Γ ⊢~ u ∷ A) □⇔
opaque
unfolding _⊩⟨_⟩_≡_
⊩ne≡⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ A ≡ B ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
∃ λ C → Neutral C × Γ ⊢ B ⇒* C × Γ ⊢ A ≅ C)
⊩ne≡⇔ {A} {Γ} {l} {B} A-ne =
Γ ⊩⟨ l ⟩ A ≡ B ⇔⟨ ⊩≡⇔ ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ A ≡ B) ⇔⟨ instance-Π-cong-⇔ $ H.⊩ne≡⇔ A-ne ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Neutrals-included × ∃ λ C → Neutral C × Γ ⊢ B ⇒* C × Γ ⊢ A ≅ C) ⇔⟨ instance-Π-cong-⇔ $
proj₂
, (or-empty-Neutral→ A-ne ,_) ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
∃ λ C → Neutral C × Γ ⊢ B ⇒* C × Γ ⊢ A ≅ C) □⇔
opaque
⊩ne≡ne⇔ :
Neutral A →
Neutral B →
Γ ⊩⟨ l ⟩ A ≡ B ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊢ A ≅ B)
⊩ne≡ne⇔ {A} {B} {Γ} {l} A-ne B-ne =
Γ ⊩⟨ l ⟩ A ≡ B ⇔⟨ ⊩≡⇔ ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ H.⊩⟨ l ⟩ A ≡ B) ⇔⟨ instance-Π-cong-⇔ $ H.⊩ne≡ne⇔ A-ne B-ne ⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Neutrals-included × Γ ⊢ A ≅ B) ⇔⟨ instance-Π-cong-⇔ $
proj₂
, (or-empty-Neutral→ A-ne ,_)
⟩
(⦃ inc : Neutrals-included or-empty Γ ⦄ → Γ ⊢ A ≅ B) □⇔
opaque
unfolding _⊩⟨_⟩_≡_∷_ ⊩ne⇔
⊩≡∷ne⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ t₁ ≡ t₂ ∷ A ⇔
(⦃ inc : Neutrals-included or-empty Γ ⦄ →
Γ ⊢≅ A ×
∃₂ λ u₁ u₂ →
Γ ⊢ t₁ ⇒* u₁ ∷ A × Γ ⊢ t₂ ⇒* u₂ ∷ A ×
Γ L.⊩neNf u₁ ≡ u₂ ∷ A)
⊩≡∷ne⇔ A-ne = (instance-Π-cong-⇔ $ H.⊩≡∷ne⇔ A-ne) ∘⇔ ⊩≡∷⇔