open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.LogicalRelation.Hidden
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
⦃ eqrel : EqRelSet R ⦄
where
open EqRelSet eqrel
open Type-restrictions R
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Irrelevance R
open import Definition.LogicalRelation.Properties R
open import Definition.LogicalRelation.ShapeView R
import Definition.LogicalRelation.Weakening R as W
open import Definition.LogicalRelation.Weakening.Restricted R
open import Definition.Typed R
open import Definition.Typed.Properties R
open import Definition.Typed.Well-formed R
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Tools.Function
open import Tools.Nat using (Nat)
open import Tools.Product as Σ
import Tools.PropositionalEquality as PE
private variable
n : Nat
Γ Δ : Con Term _
A B C t t₁ t₂ u v : Term _
ρ : Wk _ _
l l′ : Universe-level
k : LogRelKit
opaque
infix 4 _⊩⟨_⟩_∷_
_⊩⟨_⟩_∷_ : Con Term n → Universe-level → Term n → Term n → Set a
Γ ⊩⟨ l ⟩ t ∷ A =
∃ λ (⊩A : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ∷ A / ⊩A
opaque
infix 4 _⊩⟨_⟩_≡_
_⊩⟨_⟩_≡_ : Con Term n → Universe-level → Term n → Term n → Set a
Γ ⊩⟨ l ⟩ A ≡ B =
∃ λ (⊩A : Γ ⊩⟨ l ⟩ A) → (Γ ⊩⟨ l ⟩ B) × Γ ⊩⟨ l ⟩ A ≡ B / ⊩A
opaque
infix 4 _⊩⟨_⟩_≡_∷_
_⊩⟨_⟩_≡_∷_ :
Con Term n → Universe-level → Term n → Term n → Term n → Set a
Γ ⊩⟨ l ⟩ t ≡ u ∷ A =
∃ λ (⊩A : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A / ⊩A
opaque
unfolding _⊩⟨_⟩_∷_
⊩∷→⊩∷/ : (⊩A : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l′ ⟩ t ∷ A → Γ ⊩⟨ l ⟩ t ∷ A / ⊩A
⊩∷→⊩∷/ ⊩A (⊩A′ , ⊩t) = irrelevanceTerm ⊩A′ ⊩A ⊩t
opaque
unfolding _⊩⟨_⟩_≡_
⊩≡→⊩≡/ : (⊩A : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l′ ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ B / ⊩A
⊩≡→⊩≡/ ⊩A (⊩A′ , _ , A≡B) = irrelevanceEq ⊩A′ ⊩A A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
⊩≡∷→⊩≡∷/ :
(⊩A : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A / ⊩A
⊩≡∷→⊩≡∷/ ⊩A (⊩A′ , t≡u) = irrelevanceEqTerm ⊩A′ ⊩A t≡u
opaque
unfolding _⊩⟨_⟩_≡_
refl-⊩≡ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l ⟩ A ≡ A
refl-⊩≡ ⊩A =
⊩A , ⊩A , reflEq ⊩A
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
refl-⊩≡∷ :
Γ ⊩⟨ l ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ≡ t ∷ A
refl-⊩≡∷ (⊩A , ⊩t) =
⊩A , reflEqTerm ⊩A ⊩t
opaque
unfolding _⊩⟨_⟩_≡_
sym-⊩≡ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l ⟩ B ≡ A
sym-⊩≡ (⊩A , ⊩B , A≡B) =
⊩B , ⊩A , symEq ⊩A ⊩B A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
sym-⊩≡∷ :
Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ u ≡ t ∷ A
sym-⊩≡∷ (⊩A , t≡u) =
⊩A , symEqTerm ⊩A t≡u
opaque
unfolding _⊩⟨_⟩_≡_
trans-⊩≡ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l ⟩ B ≡ C →
Γ ⊩⟨ l ⟩ A ≡ C
trans-⊩≡ (⊩A , _ , A≡B) (⊩B , ⊩C , B≡C) =
⊩A , ⊩C , transEq ⊩A ⊩B ⊩C A≡B B≡C
opaque
unfolding _⊩⟨_⟩_≡_∷_
trans-⊩≡∷ :
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ u ≡ v ∷ A →
Γ ⊩⟨ l ⟩ t ≡ v ∷ A
trans-⊩≡∷ (⊩A′ , t≡u) (⊩A , u≡v) =
⊩A , transEqTerm ⊩A (irrelevanceEqTerm ⊩A′ ⊩A t≡u) u≡v
opaque
unfolding _⊩⟨_⟩_∷_
wf-⊩∷ : Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ A
wf-⊩∷ (⊩A , _) = ⊩A
opaque
unfolding _⊩⟨_⟩_≡_
wf-⊩≡ : Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A × Γ ⊩⟨ l ⟩ B
wf-⊩≡ (⊩A , ⊩B , _) = ⊩A , ⊩B
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
wf-⊩≡∷ :
Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A × Γ ⊩⟨ l ⟩ u ∷ A
wf-⊩≡∷ (⊩A , t≡u) =
let u≡t = symEqTerm ⊩A t≡u in
(⊩A , transEqTerm ⊩A t≡u u≡t) , (⊩A , transEqTerm ⊩A u≡t t≡u)
opaque
⊩⇔⊩≡ : (Γ ⊩⟨ l ⟩ A) ⇔ Γ ⊩⟨ l ⟩ A ≡ A
⊩⇔⊩≡ = refl-⊩≡ , proj₁ ∘→ wf-⊩≡
opaque
⊩∷⇔⊩≡∷ : Γ ⊩⟨ l ⟩ t ∷ A ⇔ Γ ⊩⟨ l ⟩ t ≡ t ∷ A
⊩∷⇔⊩≡∷ = refl-⊩≡∷ , proj₁ ∘→ wf-⊩≡∷
opaque
unfolding _⊩⟨_⟩_≡_
level-⊩≡ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l ⟩ B →
Γ ⊩⟨ l′ ⟩ A ≡ B →
Γ ⊩⟨ l ⟩ A ≡ B
level-⊩≡ ⊩A ⊩B A≡B =
⊩A , ⊩B , ⊩≡→⊩≡/ ⊩A A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
level-⊩≡∷ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
level-⊩≡∷ ⊩A t≡u =
⊩A , ⊩≡∷→⊩≡∷/ ⊩A t≡u
opaque
level-⊩∷ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l′ ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A
level-⊩∷ ⊩A =
⊩∷⇔⊩≡∷ .proj₂ ∘→ level-⊩≡∷ ⊩A ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
unfolding _⊩⟨_⟩_≡_ _⊩⟨_⟩_≡_∷_
conv-⊩≡∷ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ B
conv-⊩≡∷ (⊩A , ⊩B , A≡B) (⊩A′ , t≡u) =
⊩B , convEqTerm₁ ⊩A′ ⊩B (irrelevanceEq ⊩A ⊩A′ A≡B) t≡u
opaque
conv-⊩∷ :
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l′ ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ∷ B
conv-⊩∷ A≡B =
⊩∷⇔⊩≡∷ .proj₂ ∘→ conv-⊩≡∷ A≡B ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
wk-⊩ : ρ ∷ʷʳ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ A → Δ ⊩⟨ l ⟩ wk ρ A
wk-⊩ = W.wk
opaque
unfolding _⊩⟨_⟩_≡_
wk-⊩≡ : ρ ∷ʷʳ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ A ≡ B → Δ ⊩⟨ l ⟩ wk ρ A ≡ wk ρ B
wk-⊩≡ Δ⊇Γ (⊩A , ⊩B , A≡B) =
W.wk Δ⊇Γ ⊩A , W.wk Δ⊇Γ ⊩B , W.wkEq Δ⊇Γ ⊩A A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
wk-⊩≡∷ :
ρ ∷ʷʳ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Δ ⊩⟨ l ⟩ wk ρ t ≡ wk ρ u ∷ wk ρ A
wk-⊩≡∷ Δ⊇Γ (⊩A , t≡u) =
W.wk Δ⊇Γ ⊩A , W.wkEqTerm Δ⊇Γ ⊩A t≡u
opaque
wk-⊩∷ : ρ ∷ʷʳ Δ ⊇ Γ → Γ ⊩⟨ l ⟩ t ∷ A → Δ ⊩⟨ l ⟩ wk ρ t ∷ wk ρ A
wk-⊩∷ Δ⊇Γ = ⊩∷⇔⊩≡∷ .proj₂ ∘→ wk-⊩≡∷ Δ⊇Γ ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
unfolding _⊩⟨_⟩_≡_
⊩-⇒* : Γ ⊢ A ⇒* B → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ A ≡ B
⊩-⇒* A⇒*B ⊩A = ⊩A , redSubst*′ A⇒*B ⊩A
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
⊩∷-⇒* :
Γ ⊢ t ⇒* u ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
⊩∷-⇒* t⇒*u (⊩A , ⊩t) =
⊩A , redSubst*Term′ t⇒*u ⊩A ⊩t
opaque
unfolding _⊩⟨_⟩_≡_
⊩-⇐* : Γ ⊢ A ⇒* B → Γ ⊩⟨ l ⟩ B → Γ ⊩⟨ l ⟩ A ≡ B
⊩-⇐* A⇒*B ⊩B =
case redSubst* A⇒*B ⊩B of λ
(⊩A , A≡B) →
⊩A , ⊩B , A≡B
opaque
unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_
⊩∷-⇐* :
Γ ⊢ t ⇒* u ∷ A →
Γ ⊩⟨ l ⟩ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
⊩∷-⇐* t⇒*u (⊩A , ⊩u) =
⊩A , redSubst*Term t⇒*u ⊩A ⊩u
opaque
escape-⊩ : Γ ⊩⟨ l ⟩ A → Γ ⊢ A
escape-⊩ = escape
opaque
unfolding _⊩⟨_⟩_∷_
escape-⊩∷ : Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊢ t ∷ A
escape-⊩∷ (⊩A , ⊩t) = escapeTerm ⊩A ⊩t
opaque
unfolding _⊩⟨_⟩_≡_
escape-⊩≡ : Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊢ A ≅ B
escape-⊩≡ (⊩A , _ , A≡B) = escapeEq ⊩A A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
escape-⊩≡∷ : Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊢ t ≅ u ∷ A
escape-⊩≡∷ (⊩A , t≡u) = escapeTermEq ⊩A t≡u
opaque
infix -1
_∎⟨_⟩⊩ finally-⊩≡ finally-⊩≡˘
infixr -2
step-⊩≡ step-⊩≡˘ step-⊩≡≡ step-⊩≡≡˘ step-⊩≡⇒* step-⊩≡⇒ step-⊩≡⇐*
step-⊩≡⇐ _≡⟨⟩⊩_ finally-⊩≡≡ finally-⊩≡≡˘ finally-⊩≡⇐* finally-⊩≡⇒*
step-⊩≡ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡ _ = flip trans-⊩≡
syntax step-⊩≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩ B≡C
step-⊩≡˘ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡˘ _ B≡C B≡A = trans-⊩≡ (sym-⊩≡ B≡A) B≡C
syntax step-⊩≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩ B≡C
step-⊩≡≡ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → A PE.≡ B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡≡ _ B≡C PE.refl = B≡C
syntax step-⊩≡≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩≡ B≡C
step-⊩≡≡˘ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → B PE.≡ A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡≡˘ _ B≡C PE.refl = B≡C
syntax step-⊩≡≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩≡ B≡C
step-⊩≡⇒* : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ A ⇒* B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇒* _ B≡C A⇒*B =
trans-⊩≡ (⊩-⇐* A⇒*B (wf-⊩≡ B≡C .proj₁)) B≡C
syntax step-⊩≡⇒* A B≡C A⇒*B = A ⇒*⟨ A⇒*B ⟩⊩ B≡C
step-⊩≡⇒ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ A ⇒ B → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇒ _ B≡C A⇒B = step-⊩≡⇒* _ B≡C (redMany-⊢ A⇒B)
syntax step-⊩≡⇒ A B≡C A⇒B = A ⇒⟨ A⇒B ⟩⊩ B≡C
step-⊩≡⇐* : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ B ⇒* A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇐* _ B≡C B⇒*A =
trans-⊩≡ (sym-⊩≡ (⊩-⇒* B⇒*A (wf-⊩≡ B≡C .proj₁))) B≡C
syntax step-⊩≡⇐* A B≡C B⇒*A = A ⇐*⟨ B⇒*A ⟩⊩ B≡C
step-⊩≡⇐ : ∀ A → Γ ⊩⟨ l ⟩ B ≡ C → Γ ⊢ B ⇒ A → Γ ⊩⟨ l ⟩ A ≡ C
step-⊩≡⇐ _ B≡C B⇒A = step-⊩≡⇐* _ B≡C (redMany-⊢ B⇒A)
syntax step-⊩≡⇐ A B≡C B⇒A = A ⇐⟨ B⇒A ⟩⊩ B≡C
_≡⟨⟩⊩_ : ∀ A → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ B
_ ≡⟨⟩⊩ A≡B = A≡B
_∎⟨_⟩⊩ : ∀ A → Γ ⊩⟨ l ⟩ A → Γ ⊩⟨ l ⟩ A ≡ A
_ ∎⟨ ⊩A ⟩⊩ = refl-⊩≡ ⊩A
finally-⊩≡ : ∀ A B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ B
finally-⊩≡ _ _ A≡B = A≡B
syntax finally-⊩≡ A B A≡B = A ≡⟨ A≡B ⟩⊩∎ B ∎
finally-⊩≡˘ : ∀ A B → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ A ≡ B
finally-⊩≡˘ _ _ A≡B = sym-⊩≡ A≡B
syntax finally-⊩≡˘ A B B≡A = A ≡˘⟨ B≡A ⟩⊩∎ B ∎
finally-⊩≡≡ : ∀ A → B PE.≡ C → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡≡ _ PE.refl A≡B = A≡B
syntax finally-⊩≡≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩∎≡ B≡C
finally-⊩≡≡˘ : ∀ A → B PE.≡ C → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡≡˘ _ PE.refl B≡A = sym-⊩≡ B≡A
syntax finally-⊩≡≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩∎≡ B≡C
finally-⊩≡⇐* :
∀ A → Γ ⊢ C ⇒* B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡⇐* _ C⇒*B A≡B =
trans-⊩≡ A≡B (sym-⊩≡ (⊩-⇐* C⇒*B (wf-⊩≡ A≡B .proj₂)))
syntax finally-⊩≡⇐* A C⇒*B A≡B = A ≡⟨ A≡B ⟩⊩⇐* C⇒*B
finally-⊩≡⇒* :
∀ A → Γ ⊢ B ⇒* C → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ A ≡ C
finally-⊩≡⇒* _ B⇒*C A≡B =
case wf-⊩≡ A≡B of λ
(_ , ⊩B) →
trans-⊩≡ A≡B (⊩-⇒* B⇒*C ⊩B)
syntax finally-⊩≡⇒* A B⇒*C A≡B = A ≡⟨ A≡B ⟩⊩⇒* B⇒*C
opaque
infix -1
_∎⟨_⟩⊩∷ finally-⊩≡∷ finally-⊩≡∷˘
infix -2
step-⊩≡∷-conv step-⊩≡∷-conv˘ step-⊩≡∷-conv-≡ step-⊩≡∷-conv-≡˘
infixr -2
step-⊩≡∷ step-⊩≡∷˘ step-⊩≡∷≡ step-⊩≡∷≡˘ step-⊩≡∷⇒* step-⊩≡∷⇒
step-⊩≡∷⇐* step-⊩≡∷⇐ _≡⟨⟩⊩∷_ finally-⊩≡∷≡ finally-⊩≡∷≡˘
finally-⊩≡∷⇐* finally-⊩≡∷⇒*
step-⊩≡∷ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷ _ = flip trans-⊩≡∷
syntax step-⊩≡∷ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷ u≡v
step-⊩≡∷˘ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷˘ _ u≡v u≡t = trans-⊩≡∷ (sym-⊩≡∷ u≡t) u≡v
syntax step-⊩≡∷˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷ u≡v
step-⊩≡∷≡ : ∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → t PE.≡ u → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷≡ _ u≡v PE.refl = u≡v
syntax step-⊩≡∷≡ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷≡ u≡v
step-⊩≡∷≡˘ : ∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → u PE.≡ t → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷≡˘ _ u≡v PE.refl = u≡v
syntax step-⊩≡∷≡˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷≡ u≡v
step-⊩≡∷⇒* :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇒* _ u≡v t⇒*u =
trans-⊩≡∷ (⊩∷-⇐* t⇒*u (wf-⊩≡∷ u≡v .proj₁)) u≡v
syntax step-⊩≡∷⇒* t u≡v t⇒*u = t ⇒*⟨ t⇒*u ⟩⊩∷ u≡v
step-⊩≡∷⇒ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇒ _ u≡v t⇒u = step-⊩≡∷⇒* _ u≡v (redMany t⇒u)
syntax step-⊩≡∷⇒ t u≡v t⇒u = t ⇒⟨ t⇒u ⟩⊩∷ u≡v
step-⊩≡∷⇐* :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒* t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇐* _ u≡v u⇒*t =
trans-⊩≡∷ (sym-⊩≡∷ (⊩∷-⇒* u⇒*t (wf-⊩≡∷ u≡v .proj₁))) u≡v
syntax step-⊩≡∷⇐* t u≡v u⇒*t = t ⇐*⟨ u⇒*t ⟩⊩∷ u≡v
step-⊩≡∷⇐ :
∀ t → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒ t ∷ A →
Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷⇐ _ u≡v u⇒t = step-⊩≡∷⇐* _ u≡v (redMany u⇒t)
syntax step-⊩≡∷⇐ t u≡v u⇒t = t ⇐⟨ u⇒t ⟩⊩∷ u≡v
_≡⟨⟩⊩∷_ : ∀ t → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
_ ≡⟨⟩⊩∷ t≡u = t≡u
step-⊩≡∷-conv :
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv t≡u A≡B = conv-⊩≡∷ (sym-⊩≡ A≡B) t≡u
syntax step-⊩≡∷-conv t≡u A≡B = ⟨ A≡B ⟩⊩∷ t≡u
step-⊩≡∷-conv˘ :
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv˘ t≡u B≡A = conv-⊩≡∷ B≡A t≡u
syntax step-⊩≡∷-conv˘ t≡u B≡A = ˘⟨ B≡A ⟩⊩∷ t≡u
step-⊩≡∷-conv-≡ : Γ ⊩⟨ l ⟩ t ≡ u ∷ B → A PE.≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv-≡ t≡u PE.refl = t≡u
syntax step-⊩≡∷-conv-≡ t≡u A≡B = ⟨ A≡B ⟩⊩∷≡ t≡u
step-⊩≡∷-conv-≡˘ : Γ ⊩⟨ l ⟩ t ≡ u ∷ B → B PE.≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷-conv-≡˘ t≡u PE.refl = t≡u
syntax step-⊩≡∷-conv-≡˘ t≡u B≡A = ˘⟨ B≡A ⟩⊩∷≡ t≡u
_∎⟨_⟩⊩∷ : ∀ t → Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ t ∷ A
_ ∎⟨ ⊩t ⟩⊩∷ = refl-⊩≡∷ ⊩t
finally-⊩≡∷ : ∀ t u → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷ _ _ t≡u = t≡u
syntax finally-⊩≡∷ t u t≡u = t ≡⟨ t≡u ⟩⊩∷∎ u ∎
finally-⊩≡∷˘ : ∀ t u → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷˘ _ _ t≡u = sym-⊩≡∷ t≡u
syntax finally-⊩≡∷˘ t u u≡t = t ≡˘⟨ u≡t ⟩⊩∷∎ u ∎
finally-⊩≡∷≡ :
∀ t → u PE.≡ v → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷≡ _ PE.refl t≡u = t≡u
syntax finally-⊩≡∷≡ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷∎≡ u≡v
finally-⊩≡∷≡˘ :
∀ t → u PE.≡ v → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷≡˘ _ PE.refl u≡t = sym-⊩≡∷ u≡t
syntax finally-⊩≡∷≡˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷∎≡ u≡v
finally-⊩≡∷⇐* :
∀ t → Γ ⊢ v ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷⇐* _ v⇒*u t≡u =
trans-⊩≡∷ t≡u (sym-⊩≡∷ (⊩∷-⇐* v⇒*u (wf-⊩≡∷ t≡u .proj₂)))
syntax finally-⊩≡∷⇐* t v⇒*u t≡u = t ≡⟨ t≡u ⟩⊩∷⇐* v⇒*u
finally-⊩≡∷⇒* :
∀ t → Γ ⊢ u ⇒* v ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷⇒* _ u⇒*v t≡u =
case wf-⊩≡∷ t≡u of λ
(_ , ⊩u) →
trans-⊩≡∷ t≡u (⊩∷-⇒* u⇒*v ⊩u)
syntax finally-⊩≡∷⇒* t u⇒*v t≡u = t ≡⟨ t≡u ⟩⊩∷⇒* u⇒*v
opaque
infix -1
_∷_∎⟨_⟩⊩∷∷ finally-⊩≡∷∷ finally-⊩≡∷∷˘
infix -2
step-⊩≡∷∷-conv step-⊩≡∷∷-conv˘ step-⊩≡∷∷-conv-≡ step-⊩≡∷∷-conv-≡˘
infixr -2
step-⊩≡∷∷ step-⊩≡∷∷˘ step-⊩≡∷∷≡ step-⊩≡∷∷≡˘ step-⊩≡∷∷⇒* step-⊩≡∷∷⇒
step-⊩≡∷∷⇐* step-⊩≡∷∷⇐ _∷_≡⟨⟩⊩∷∷_ finally-⊩≡∷∷≡ finally-⊩≡∷∷≡˘
finally-⊩≡∷∷⇐* finally-⊩≡∷∷⇒*
step-⊩≡∷∷ :
∀ t A →
Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷ _ _ = step-⊩≡∷ _
syntax step-⊩≡∷∷ t A u≡v t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷ u≡v
step-⊩≡∷∷˘ :
∀ t A →
Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊩⟨ l′ ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷˘ _ _ = step-⊩≡∷˘ _
syntax step-⊩≡∷∷˘ t A u≡v u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∷ u≡v
step-⊩≡∷∷≡ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → t PE.≡ u → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷≡ _ _ = step-⊩≡∷≡ _
syntax step-⊩≡∷∷≡ t A u≡v t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷≡ u≡v
step-⊩≡∷∷≡˘ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → u PE.≡ t → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷≡˘ _ _ = step-⊩≡∷≡˘ _
syntax step-⊩≡∷∷≡˘ t A u≡v u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∷≡ u≡v
step-⊩≡∷∷⇒* :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇒* _ _ = step-⊩≡∷⇒* _
syntax step-⊩≡∷∷⇒* t A u≡v t⇒*u = t ∷ A ⇒*⟨ t⇒*u ⟩⊩∷∷ u≡v
step-⊩≡∷∷⇒ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ t ⇒ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇒ _ _ = step-⊩≡∷⇒ _
syntax step-⊩≡∷∷⇒ t A u≡v t⇒u = t ∷ A ⇒⟨ t⇒u ⟩⊩∷∷ u≡v
step-⊩≡∷∷⇐* :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒* t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇐* _ _ = step-⊩≡∷⇐* _
syntax step-⊩≡∷∷⇐* t A u≡v u⇒*t = t ∷ A ⇐*⟨ u⇒*t ⟩⊩∷∷ u≡v
step-⊩≡∷∷⇐ :
∀ t A → Γ ⊩⟨ l ⟩ u ≡ v ∷ A → Γ ⊢ u ⇒ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
step-⊩≡∷∷⇐ _ _ = step-⊩≡∷⇐ _
syntax step-⊩≡∷∷⇐ t A u≡v u⇒t = t ∷ A ⇐⟨ u⇒t ⟩⊩∷∷ u≡v
_∷_≡⟨⟩⊩∷∷_ : ∀ t A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
_ ∷ _ ≡⟨⟩⊩∷∷ t≡u = t≡u
step-⊩≡∷∷-conv :
∀ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ A ≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv _ = step-⊩≡∷-conv
syntax step-⊩≡∷∷-conv A t≡u A≡B = ∷ A ⟨ A≡B ⟩⊩∷∷ t≡u
step-⊩≡∷∷-conv˘ :
∀ A → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B → Γ ⊩⟨ l ⟩ B ≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv˘ _ = step-⊩≡∷-conv˘
syntax step-⊩≡∷∷-conv˘ A t≡u B≡A = ∷ A ˘⟨ B≡A ⟩⊩∷∷ t≡u
step-⊩≡∷∷-conv-≡ :
∀ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ B → A PE.≡ B → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv-≡ _ = step-⊩≡∷-conv-≡
syntax step-⊩≡∷∷-conv-≡ A t≡u A≡B = ∷ A ⟨ A≡B ⟩⊩∷∷≡ t≡u
step-⊩≡∷∷-conv-≡˘ :
∀ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ B → B PE.≡ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
step-⊩≡∷∷-conv-≡˘ _ = step-⊩≡∷-conv-≡˘
syntax step-⊩≡∷∷-conv-≡˘ A t≡u B≡A = ∷ A ˘⟨ B≡A ⟩⊩∷∷≡ t≡u
_∷_∎⟨_⟩⊩∷∷ : ∀ t A → Γ ⊩⟨ l ⟩ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ t ∷ A
_ ∷ _ ∎⟨ ⊩t ⟩⊩∷∷ = refl-⊩≡∷ ⊩t
finally-⊩≡∷∷ : ∀ t A u → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷∷ _ _ _ t≡u = t≡u
syntax finally-⊩≡∷∷ t A u t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∎∷ u ∎
finally-⊩≡∷∷˘ : ∀ t A u → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A
finally-⊩≡∷∷˘ _ _ _ t≡u = sym-⊩≡∷ t≡u
syntax finally-⊩≡∷∷˘ t A u u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∎∷ u ∎
finally-⊩≡∷∷≡ :
∀ t A → u PE.≡ v → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷≡ _ _ = finally-⊩≡∷≡ _
syntax finally-⊩≡∷∷≡ t A u≡v t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∎∷≡ u≡v
finally-⊩≡∷∷≡˘ :
∀ t A → u PE.≡ v → Γ ⊩⟨ l ⟩ u ≡ t ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷≡˘ _ _ = finally-⊩≡∷≡˘ _
syntax finally-⊩≡∷∷≡˘ t A u≡v u≡t = t ∷ A ≡˘⟨ u≡t ⟩⊩∷∎∷≡ u≡v
finally-⊩≡∷∷⇐* :
∀ t A → Γ ⊢ v ⇒* u ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷⇐* _ _ = finally-⊩≡∷⇐* _
syntax finally-⊩≡∷∷⇐* t A v⇒*u t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷⇐* v⇒*u
finally-⊩≡∷∷⇒* :
∀ t A → Γ ⊢ u ⇒* v ∷ A → Γ ⊩⟨ l ⟩ t ≡ u ∷ A → Γ ⊩⟨ l ⟩ t ≡ v ∷ A
finally-⊩≡∷∷⇒* _ _ = finally-⊩≡∷⇒* _
syntax finally-⊩≡∷∷⇒* t A v⇒*u t≡u = t ∷ A ≡⟨ t≡u ⟩⊩∷∷⇒* v⇒*u
opaque
unfolding emb-≤-⊩
emb-⊩ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l′ ⟩ A
emb-⊩ = emb-≤-⊩
opaque
unfolding _⊩⟨_⟩_≡_
emb-⊩≡ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ A ≡ B →
Γ ⊩⟨ l′ ⟩ A ≡ B
emb-⊩≡ p (⊩A , ⊩B , A≡B) =
emb-≤-⊩ p ⊩A
, emb-≤-⊩ p ⊩B
, emb-≤-⊩≡ A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
emb-⊩≡∷ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A →
Γ ⊩⟨ l′ ⟩ t ≡ u ∷ A
emb-⊩≡∷ p (⊩A , t≡u) =
emb-≤-⊩ p ⊩A
, emb-≤-⊩≡∷ t≡u
opaque
emb-⊩∷ :
l ≤ᵘ l′ →
Γ ⊩⟨ l ⟩ t ∷ A →
Γ ⊩⟨ l′ ⟩ t ∷ A
emb-⊩∷ l≤l′ =
⊩∷⇔⊩≡∷ .proj₂ ∘→ emb-⊩≡∷ l≤l′ ∘→ ⊩∷⇔⊩≡∷ .proj₁
opaque
unfolding _⊩⟨_⟩_∷_
⊩∷-intro :
(⊩A : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ t ∷ A / ⊩A →
Γ ⊩⟨ l ⟩ t ∷ A
⊩∷-intro = _,_
opaque
unfolding _⊩⟨_⟩_≡_
⊩≡-intro :
(⊩A : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ B →
Γ ⊩⟨ l ⟩ A ≡ B / ⊩A →
Γ ⊩⟨ l ⟩ A ≡ B
⊩≡-intro ⊩A ⊩B A≡B = ⊩A , ⊩B , A≡B
opaque
unfolding _⊩⟨_⟩_≡_∷_
⊩≡∷-intro :
(⊩A : Γ ⊩⟨ l ⟩ A) →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A / ⊩A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
⊩≡∷-intro ⊩A t≡u =
⊩A , t≡u
opaque
neutral-⊩ :
Neutrals-included →
Neutral A →
Γ ⊢≅ A →
Γ ⊩⟨ l ⟩ A
neutral-⊩ = neu
opaque
unfolding _⊩⟨_⟩_∷_
neutral-⊩∷ :
Neutrals-included →
Γ ⊩⟨ l ⟩ A →
Neutral t →
Γ ⊢~ t ∷ A →
Γ ⊩⟨ l ⟩ t ∷ A
neutral-⊩∷ inc ⊩A t-ne t~t =
⊩A , neuTerm inc ⊩A t-ne t~t
opaque
unfolding _⊩⟨_⟩_≡_
neutral-⊩≡ :
Γ ⊩⟨ l ⟩ A →
Γ ⊩⟨ l ⟩ B →
Neutral A →
Neutral B →
Γ ⊢ A ≅ B →
Γ ⊩⟨ l ⟩ A ≡ B
neutral-⊩≡ ⊩A ⊩B A-ne B-ne A≅B =
⊩A , ⊩B , neuEq ⊩A A-ne B-ne A≅B
opaque
unfolding _⊩⟨_⟩_≡_∷_
neutral-⊩≡∷ :
Neutrals-included →
Γ ⊩⟨ l ⟩ A →
Neutral t →
Neutral u →
Γ ⊢ t ~ u ∷ A →
Γ ⊩⟨ l ⟩ t ≡ u ∷ A
neutral-⊩≡∷ inc ⊩A t-ne u-ne t~u =
⊩A , neuEqTerm inc ⊩A t-ne u-ne t~u
opaque
⊩ne⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ A ⇔ (Neutrals-included × Γ ⊢≅ A)
⊩ne⇔ A-ne =
(λ ⊩A →
case ne-view A-ne ⊩A of λ {
(ne (ne inc B A⇒*B _ B≅B)) →
case whnfRed* A⇒*B (ne A-ne) of λ {
PE.refl →
inc , B≅B }})
, (λ (inc , A≅A) → neu inc A-ne A≅A)
opaque
unfolding _⊩⟨_⟩_≡_
⊩ne≡⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ A ≡ B ⇔
(Neutrals-included × ∃ λ C → Neutral C × Γ ⊢ B ⇒* C × Γ ⊢ A ≅ C)
⊩ne≡⇔ {A} {B} A-ne =
(λ (⊩A , ⊩B , A≡B) →
case ne-view A-ne ⊩A of λ {
(ne (ne inc _ A⇒*A′ _ _)) →
case A≡B of λ
(ne₌ inc C B⇒*C C-ne A′≅C) →
case whnfRed* A⇒*A′ (ne A-ne) of λ {
PE.refl →
inc , C , C-ne , B⇒*C , A′≅C }})
, (λ (inc , C , C-ne , B⇒*C , A≅C) →
let ≅A , ≅C = wf-⊢≅ A≅C in
sym-⊩≡
(B ⇒*⟨ B⇒*C ⟩⊩
C ≡⟨ neutral-⊩≡
(⊩ne⇔ C-ne .proj₂ (inc , ≅C))
(⊩ne⇔ A-ne .proj₂ (inc , ≅A))
C-ne A-ne (≅-sym A≅C) ⟩⊩∎
A ∎))
opaque
⊩ne≡ne⇔ :
Neutral A →
Neutral B →
Γ ⊩⟨ l ⟩ A ≡ B ⇔ (Neutrals-included × Γ ⊢ A ≅ B)
⊩ne≡ne⇔ {A} {B} {Γ} {l} A-ne B-ne =
Γ ⊩⟨ l ⟩ A ≡ B ⇔⟨ ⊩ne≡⇔ A-ne ⟩
(Neutrals-included × ∃ λ C → Neutral C × Γ ⊢ B ⇒* C × Γ ⊢ A ≅ C) ⇔⟨ (Σ-cong-⇔ λ _ →
(λ (_ , _ , B⇒*C , A≅C) →
case whnfRed* B⇒*C (ne B-ne) of λ {
PE.refl →
A≅C })
, (λ A≅B → _ , B-ne , id (wf-⊢≡ (≅-eq A≅B) .proj₂) , A≅B))
⟩
Neutrals-included × Γ ⊢ A ≅ B □⇔
opaque
unfolding _⊩⟨_⟩_≡_∷_ ⊩ne⇔ neu
⊩≡∷ne⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ t₁ ≡ t₂ ∷ A ⇔
(Γ ⊢≅ A ×
∃₂ λ u₁ u₂ →
Γ ⊢ t₁ ⇒* u₁ ∷ A × Γ ⊢ t₂ ⇒* u₂ ∷ A ×
Γ ⊩neNf u₁ ≡ u₂ ∷ A)
⊩≡∷ne⇔ {A} A-ne =
(λ (⊩A , t₁≡t₂) →
case ne-view A-ne ⊩A of λ {
(ne (ne inc _ A⇒*A′ _ _)) →
case t₁≡t₂ of λ
(neₜ₌ u₁ u₂ t₁⇒*u₁ t₂⇒*u₂ u₁≡u₂) →
case whnfRed* A⇒*A′ (ne A-ne) of λ {
PE.refl →
⊩ne⇔ A-ne .proj₁ ⊩A .proj₂ ,
u₁ , u₂ , t₁⇒*u₁ , t₂⇒*u₂ , u₁≡u₂ }})
, (λ (≅A , u₁ , u₂ , t₁⇒*u₁ , t₂⇒*u₂ , u₁≡u₂@(neNfₜ₌ inc _ _ _)) →
⊩ne⇔ A-ne .proj₂ (inc , ≅A) ,
neₜ₌ u₁ u₂ t₁⇒*u₁ t₂⇒*u₂ u₁≡u₂)
opaque
unfolding _⊩⟨_⟩_∷_ ⊩ne⇔ neu
⊩∷ne⇔ :
Neutral A →
Γ ⊩⟨ l ⟩ t ∷ A ⇔
(Neutrals-included × Γ ⊢≅ A ×
∃ λ u → Γ ⊢ t ⇒* u ∷ A × Neutral u × Γ ⊢~ u ∷ A)
⊩∷ne⇔ {A} {Γ} {l} {t} A-ne =
Γ ⊩⟨ l ⟩ t ∷ A ⇔⟨ ⊩∷⇔⊩≡∷ ⟩
Γ ⊩⟨ l ⟩ t ≡ t ∷ A ⇔⟨ ⊩≡∷ne⇔ A-ne ⟩
(Γ ⊢≅ A ×
∃₂ λ u₁ u₂ →
Γ ⊢ t ⇒* u₁ ∷ A × Γ ⊢ t ⇒* u₂ ∷ A ×
Γ ⊩neNf u₁ ≡ u₂ ∷ A) ⇔⟨ (λ (≅A , _ , _ , t⇒*u₁ , _ , neNfₜ₌ inc u₁-ne _ u₁~u₂) →
inc , ≅A , _ , t⇒*u₁ , u₁-ne , wf-⊢~∷ u₁~u₂ .proj₁)
, (λ (inc , ≅A , _ , t⇒*u , u-ne , ~u) →
≅A , _ , _ , t⇒*u , t⇒*u , neNfₜ₌ inc u-ne u-ne ~u)
⟩
(Neutrals-included × Γ ⊢≅ A ×
∃ λ u → Γ ⊢ t ⇒* u ∷ A × Neutral u × Γ ⊢~ u ∷ A) □⇔