------------------------------------------------------------------------
-- A variant of the logical relation with hidden reducibility
-- arguments, along with variants of some other relations
------------------------------------------------------------------------

open import Definition.Typed.EqualityRelation
open import Definition.Typed.Restrictions
open import Graded.Modality

module Definition.LogicalRelation.Hidden
  {a} {M : Set a}
  {𝕄 : Modality M}
  (R : Type-restrictions 𝕄)
   eqrel : EqRelSet R 
  where

open EqRelSet eqrel
open Type-restrictions R

open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Irrelevance R
open import Definition.LogicalRelation.Properties R
open import Definition.LogicalRelation.ShapeView R
import Definition.LogicalRelation.Weakening R as W
open import Definition.LogicalRelation.Weakening.Restricted R

open import Definition.Typed R
open import Definition.Typed.Properties R
open import Definition.Typed.Well-formed R

open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M

open import Tools.Function
open import Tools.Nat using (Nat)
open import Tools.Product as Σ
import Tools.PropositionalEquality as PE

private variable
  n                 : Nat
  Γ Δ               : Con Term _
  A B C t t₁ t₂ u v : Term _
  ρ                 : Wk _ _
  l l′              : Universe-level
  k                 : LogRelKit

------------------------------------------------------------------------
-- The type formers

opaque

  -- Reducible terms.

  infix 4 _⊩⟨_⟩_∷_

  _⊩⟨_⟩_∷_ : Con Term n  Universe-level  Term n  Term n  Set a
  Γ ⊩⟨ l  t  A =
     λ (⊩A : Γ ⊩⟨ l  A)  Γ ⊩⟨ l  t  A / ⊩A

opaque

  -- Reducible type equality.

  infix 4 _⊩⟨_⟩_≡_

  _⊩⟨_⟩_≡_ : Con Term n  Universe-level  Term n  Term n  Set a
  Γ ⊩⟨ l  A  B =
     λ (⊩A : Γ ⊩⟨ l  A)  (Γ ⊩⟨ l  B) × Γ ⊩⟨ l  A  B / ⊩A

opaque

  -- Reducible term equality.

  infix 4 _⊩⟨_⟩_≡_∷_

  _⊩⟨_⟩_≡_∷_ :
    Con Term n  Universe-level  Term n  Term n  Term n  Set a
  Γ ⊩⟨ l  t  u  A =
     λ (⊩A : Γ ⊩⟨ l  A) 
    Γ ⊩⟨ l  t  u  A / ⊩A

------------------------------------------------------------------------
-- Conversions to the underlying type formers

opaque
  unfolding _⊩⟨_⟩_∷_

  -- A conversion to _⊩⟨_⟩_∷_/_.

  ⊩∷→⊩∷/ : (⊩A : Γ ⊩⟨ l  A)  Γ ⊩⟨ l′  t  A  Γ ⊩⟨ l  t  A / ⊩A
  ⊩∷→⊩∷/ ⊩A (⊩A′ , ⊩t) = irrelevanceTerm ⊩A′ ⊩A ⊩t

opaque
  unfolding _⊩⟨_⟩_≡_

  -- A conversion to _⊩⟨_⟩_≡_/_.

  ⊩≡→⊩≡/ : (⊩A : Γ ⊩⟨ l  A)  Γ ⊩⟨ l′  A  B  Γ ⊩⟨ l  A  B / ⊩A
  ⊩≡→⊩≡/ ⊩A (⊩A′ , _ , A≡B) = irrelevanceEq ⊩A′ ⊩A A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- A conversion to _⊩⟨_⟩_≡_∷_/_.

  ⊩≡∷→⊩≡∷/ :
    (⊩A : Γ ⊩⟨ l  A)  Γ ⊩⟨ l′  t  u  A 
    Γ ⊩⟨ l  t  u  A / ⊩A
  ⊩≡∷→⊩≡∷/ ⊩A (⊩A′ , t≡u) = irrelevanceEqTerm ⊩A′ ⊩A t≡u

------------------------------------------------------------------------
-- Reflexivity

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Reflexivity for _⊩⟨_⟩_≡_.

  refl-⊩≡ :
    Γ ⊩⟨ l  A 
    Γ ⊩⟨ l  A  A
  refl-⊩≡ ⊩A =
    ⊩A , ⊩A , reflEq ⊩A

opaque
  unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_

  -- Reflexivity for _⊩⟨_⟩_≡_∷_.

  refl-⊩≡∷ :
    Γ ⊩⟨ l  t  A 
    Γ ⊩⟨ l  t  t  A
  refl-⊩≡∷ (⊩A , ⊩t) =
    ⊩A , reflEqTerm ⊩A ⊩t

------------------------------------------------------------------------
-- Symmetry

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Symmetry for _⊩⟨_⟩_≡_.

  sym-⊩≡ :
    Γ ⊩⟨ l  A  B 
    Γ ⊩⟨ l  B  A
  sym-⊩≡ (⊩A , ⊩B , A≡B) =
    ⊩B , ⊩A , symEq ⊩A ⊩B A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- Symmetry for _⊩⟨_⟩_≡_∷_.

  sym-⊩≡∷ :
    Γ ⊩⟨ l  t  u  A 
    Γ ⊩⟨ l  u  t  A
  sym-⊩≡∷ (⊩A , t≡u) =
    ⊩A , symEqTerm ⊩A t≡u

------------------------------------------------------------------------
-- Transitivity

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Transitivity for _⊩⟨_⟩_≡_.

  trans-⊩≡ :
    Γ ⊩⟨ l  A  B 
    Γ ⊩⟨ l  B  C 
    Γ ⊩⟨ l  A  C
  trans-⊩≡ (⊩A , _ , A≡B) (⊩B , ⊩C , B≡C) =
    ⊩A , ⊩C , transEq ⊩A ⊩B ⊩C A≡B B≡C

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- Transitivity for _⊩⟨_⟩_≡_∷_.

  trans-⊩≡∷ :
    Γ ⊩⟨ l′  t  u  A 
    Γ ⊩⟨ l  u  v  A 
    Γ ⊩⟨ l  t  v  A
  trans-⊩≡∷ (⊩A′ , t≡u) (⊩A , u≡v) =
    ⊩A , transEqTerm ⊩A (irrelevanceEqTerm ⊩A′ ⊩A t≡u) u≡v

------------------------------------------------------------------------
-- Well-formedness lemmas

opaque
  unfolding _⊩⟨_⟩_∷_

  -- A well-formedness lemma for _⊩⟨_⟩_∷_.

  wf-⊩∷ : Γ ⊩⟨ l  t  A  Γ ⊩⟨ l  A
  wf-⊩∷ (⊩A , _) = ⊩A

opaque
  unfolding _⊩⟨_⟩_≡_

  -- A well-formedness lemma for _⊩⟨_⟩_≡_.

  wf-⊩≡ : Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A × Γ ⊩⟨ l  B
  wf-⊩≡ (⊩A , ⊩B , _) = ⊩A , ⊩B

opaque
  unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_

  -- A well-formedness lemma for _⊩⟨_⟩_≡_∷_.

  wf-⊩≡∷ :
    Γ ⊩⟨ l  t  u  A 
    Γ ⊩⟨ l  t  A × Γ ⊩⟨ l  u  A
  wf-⊩≡∷ (⊩A , t≡u) =
    let u≡t = symEqTerm ⊩A t≡u in
    (⊩A , transEqTerm ⊩A t≡u u≡t) , (⊩A , transEqTerm ⊩A u≡t t≡u)

------------------------------------------------------------------------
-- Some characterisation lemmas

opaque

  -- A characterisation lemma for _⊩⟨_⟩_.

  ⊩⇔⊩≡ : (Γ ⊩⟨ l  A)  Γ ⊩⟨ l  A  A
  ⊩⇔⊩≡ = refl-⊩≡ , proj₁ ∘→ wf-⊩≡

opaque

  -- A characterisation lemma for _⊩⟨_⟩_∷_.

  ⊩∷⇔⊩≡∷ : Γ ⊩⟨ l  t  A  Γ ⊩⟨ l  t  t  A
  ⊩∷⇔⊩≡∷ = refl-⊩≡∷ , proj₁ ∘→ wf-⊩≡∷

------------------------------------------------------------------------
-- Changing type levels

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Changing type levels for _⊩⟨_⟩_≡_.

  level-⊩≡ :
    Γ ⊩⟨ l  A 
    Γ ⊩⟨ l  B 
    Γ ⊩⟨ l′  A  B 
    Γ ⊩⟨ l  A  B
  level-⊩≡ ⊩A ⊩B A≡B =
    ⊩A , ⊩B , ⊩≡→⊩≡/ ⊩A A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- Changing type levels for _⊩⟨_⟩_≡_∷_.

  level-⊩≡∷ :
    Γ ⊩⟨ l  A 
    Γ ⊩⟨ l′  t  u  A 
    Γ ⊩⟨ l  t  u  A
  level-⊩≡∷ ⊩A t≡u =
    ⊩A , ⊩≡∷→⊩≡∷/ ⊩A t≡u

opaque

  -- Changing type levels for _⊩⟨_⟩_∷_.

  level-⊩∷ :
    Γ ⊩⟨ l  A 
    Γ ⊩⟨ l′  t  A 
    Γ ⊩⟨ l  t  A
  level-⊩∷ ⊩A =
    ⊩∷⇔⊩≡∷ .proj₂ ∘→ level-⊩≡∷ ⊩A ∘→ ⊩∷⇔⊩≡∷ .proj₁

------------------------------------------------------------------------
-- Conversion

opaque
  unfolding _⊩⟨_⟩_≡_ _⊩⟨_⟩_≡_∷_

  -- Conversion for _⊩⟨_⟩_≡_∷_.

  conv-⊩≡∷ :
    Γ ⊩⟨ l  A  B 
    Γ ⊩⟨ l′  t  u  A 
    Γ ⊩⟨ l  t  u  B
  conv-⊩≡∷ (⊩A , ⊩B , A≡B) (⊩A′ , t≡u) =
    ⊩B , convEqTerm₁ ⊩A′ ⊩B (irrelevanceEq ⊩A ⊩A′ A≡B) t≡u

opaque

  -- Conversion for _⊩⟨_⟩_∷_.

  conv-⊩∷ :
    Γ ⊩⟨ l  A  B 
    Γ ⊩⟨ l′  t  A 
    Γ ⊩⟨ l  t  B
  conv-⊩∷ A≡B =
    ⊩∷⇔⊩≡∷ .proj₂ ∘→ conv-⊩≡∷ A≡B ∘→ ⊩∷⇔⊩≡∷ .proj₁

------------------------------------------------------------------------
-- Weakening

opaque

  -- Weakening for _⊩⟨_⟩_.

  wk-⊩ : ρ ∷ʷʳ Δ  Γ  Γ ⊩⟨ l  A  Δ ⊩⟨ l  wk ρ A
  wk-⊩ = W.wk

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Weakening for _⊩⟨_⟩_≡_.

  wk-⊩≡ : ρ ∷ʷʳ Δ  Γ  Γ ⊩⟨ l  A  B  Δ ⊩⟨ l  wk ρ A  wk ρ B
  wk-⊩≡ Δ⊇Γ (⊩A , ⊩B , A≡B) =
    W.wk Δ⊇Γ ⊩A , W.wk Δ⊇Γ ⊩B , W.wkEq Δ⊇Γ ⊩A A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- Weakening for _⊩⟨_⟩_≡_∷_.

  wk-⊩≡∷ :
    ρ ∷ʷʳ Δ  Γ  Γ ⊩⟨ l  t  u  A 
    Δ ⊩⟨ l  wk ρ t  wk ρ u  wk ρ A
  wk-⊩≡∷ Δ⊇Γ (⊩A , t≡u) =
    W.wk Δ⊇Γ ⊩A , W.wkEqTerm Δ⊇Γ ⊩A t≡u

opaque

  -- Weakening for _⊩⟨_⟩_∷_.

  wk-⊩∷ : ρ ∷ʷʳ Δ  Γ  Γ ⊩⟨ l  t  A  Δ ⊩⟨ l  wk ρ t  wk ρ A
  wk-⊩∷ Δ⊇Γ = ⊩∷⇔⊩≡∷ .proj₂ ∘→ wk-⊩≡∷ Δ⊇Γ ∘→ ⊩∷⇔⊩≡∷ .proj₁

------------------------------------------------------------------------
-- Reduction

opaque
  unfolding _⊩⟨_⟩_≡_

  -- A reduction lemma for _⊩⟨_⟩_.

  ⊩-⇒* : Γ  A ⇒* B  Γ ⊩⟨ l  A  Γ ⊩⟨ l  A  B
  ⊩-⇒* A⇒*B ⊩A = ⊩A , redSubst*′ A⇒*B ⊩A

opaque
  unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_

  -- A reduction lemma for _⊩⟨_⟩_∷_.

  ⊩∷-⇒* :
    Γ  t ⇒* u  A 
    Γ ⊩⟨ l  t  A 
    Γ ⊩⟨ l  t  u  A
  ⊩∷-⇒* t⇒*u (⊩A , ⊩t) =
    ⊩A , redSubst*Term′ t⇒*u ⊩A ⊩t

------------------------------------------------------------------------
-- Expansion

opaque
  unfolding _⊩⟨_⟩_≡_

  -- An expansion lemma for _⊩⟨_⟩_.

  ⊩-⇐* : Γ  A ⇒* B  Γ ⊩⟨ l  B  Γ ⊩⟨ l  A  B
  ⊩-⇐* A⇒*B ⊩B =
    case redSubst* A⇒*B ⊩B of λ
      (⊩A , A≡B) 
    ⊩A , ⊩B , A≡B

opaque
  unfolding _⊩⟨_⟩_∷_ _⊩⟨_⟩_≡_∷_

  -- An expansion lemma for _⊩⟨_⟩_∷_.

  ⊩∷-⇐* :
    Γ  t ⇒* u  A 
    Γ ⊩⟨ l  u  A 
    Γ ⊩⟨ l  t  u  A
  ⊩∷-⇐* t⇒*u (⊩A , ⊩u) =
    ⊩A , redSubst*Term t⇒*u ⊩A ⊩u

------------------------------------------------------------------------
-- Escape lemmas

opaque

  -- An escape lemma for _⊩⟨_⟩_.

  escape-⊩ : Γ ⊩⟨ l  A  Γ  A
  escape-⊩ = escape

opaque
  unfolding _⊩⟨_⟩_∷_

  -- An escape lemma for _⊩⟨_⟩_∷_.

  escape-⊩∷ : Γ ⊩⟨ l  t  A  Γ  t  A
  escape-⊩∷ (⊩A , ⊩t) = escapeTerm ⊩A ⊩t

opaque
  unfolding _⊩⟨_⟩_≡_

  -- An escape lemma for _⊩⟨_⟩_≡_.

  escape-⊩≡ : Γ ⊩⟨ l  A  B  Γ  A  B
  escape-⊩≡ (⊩A , _ , A≡B) = escapeEq ⊩A A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- An escape lemma for _⊩⟨_⟩_≡_∷_.

  escape-⊩≡∷ : Γ ⊩⟨ l  t  u  A  Γ  t  u  A
  escape-⊩≡∷ (⊩A , t≡u) = escapeTermEq ⊩A t≡u

------------------------------------------------------------------------
-- Equational reasoning combinators

-- For more explanations of the combinators, see
-- Definition.Typed.Reasoning.Reduction.

opaque

  -- Equational reasoning combinators for _⊩⟨_⟩_≡_.

  infix -1
    _∎⟨_⟩⊩ finally-⊩≡ finally-⊩≡˘
  infixr -2
    step-⊩≡ step-⊩≡˘ step-⊩≡≡ step-⊩≡≡˘ step-⊩≡⇒* step-⊩≡⇒ step-⊩≡⇐*
    step-⊩≡⇐ _≡⟨⟩⊩_ finally-⊩≡≡ finally-⊩≡≡˘ finally-⊩≡⇐* finally-⊩≡⇒*

  step-⊩≡ :  A  Γ ⊩⟨ l  B  C  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A  C
  step-⊩≡ _ = flip trans-⊩≡

  syntax step-⊩≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩ B≡C

  step-⊩≡˘ :  A  Γ ⊩⟨ l  B  C  Γ ⊩⟨ l  B  A  Γ ⊩⟨ l  A  C
  step-⊩≡˘ _ B≡C B≡A = trans-⊩≡ (sym-⊩≡ B≡A) B≡C

  syntax step-⊩≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩ B≡C

  step-⊩≡≡ :  A  Γ ⊩⟨ l  B  C  A PE.≡ B  Γ ⊩⟨ l  A  C
  step-⊩≡≡ _ B≡C PE.refl = B≡C

  syntax step-⊩≡≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩≡ B≡C

  step-⊩≡≡˘ :  A  Γ ⊩⟨ l  B  C  B PE.≡ A  Γ ⊩⟨ l  A  C
  step-⊩≡≡˘ _ B≡C PE.refl = B≡C

  syntax step-⊩≡≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩≡ B≡C

  step-⊩≡⇒* :  A  Γ ⊩⟨ l  B  C  Γ  A ⇒* B  Γ ⊩⟨ l  A  C
  step-⊩≡⇒* _ B≡C A⇒*B =
    trans-⊩≡ (⊩-⇐* A⇒*B (wf-⊩≡ B≡C .proj₁)) B≡C

  syntax step-⊩≡⇒* A B≡C A⇒*B = A ⇒*⟨ A⇒*B ⟩⊩ B≡C

  step-⊩≡⇒ :  A  Γ ⊩⟨ l  B  C  Γ  A  B  Γ ⊩⟨ l  A  C
  step-⊩≡⇒ _ B≡C A⇒B = step-⊩≡⇒* _ B≡C (redMany-⊢ A⇒B)

  syntax step-⊩≡⇒ A B≡C A⇒B = A ⇒⟨ A⇒B ⟩⊩ B≡C

  step-⊩≡⇐* :  A  Γ ⊩⟨ l  B  C  Γ  B ⇒* A  Γ ⊩⟨ l  A  C
  step-⊩≡⇐* _ B≡C B⇒*A =
    trans-⊩≡ (sym-⊩≡ (⊩-⇒* B⇒*A (wf-⊩≡ B≡C .proj₁))) B≡C

  syntax step-⊩≡⇐* A B≡C B⇒*A = A ⇐*⟨ B⇒*A ⟩⊩ B≡C

  step-⊩≡⇐ :  A  Γ ⊩⟨ l  B  C  Γ  B  A  Γ ⊩⟨ l  A  C
  step-⊩≡⇐ _ B≡C B⇒A = step-⊩≡⇐* _ B≡C (redMany-⊢ B⇒A)

  syntax step-⊩≡⇐ A B≡C B⇒A = A ⇐⟨ B⇒A ⟩⊩ B≡C

  _≡⟨⟩⊩_ :  A  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A  B
  _ ≡⟨⟩⊩ A≡B = A≡B

  _∎⟨_⟩⊩ :  A  Γ ⊩⟨ l  A  Γ ⊩⟨ l  A  A
  _ ∎⟨ ⊩A ⟩⊩ = refl-⊩≡ ⊩A

  finally-⊩≡ :  A B  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A  B
  finally-⊩≡ _ _ A≡B = A≡B

  syntax finally-⊩≡ A B A≡B = A ≡⟨ A≡B ⟩⊩∎ B 

  finally-⊩≡˘ :  A B  Γ ⊩⟨ l  B  A  Γ ⊩⟨ l  A  B
  finally-⊩≡˘ _ _ A≡B = sym-⊩≡ A≡B

  syntax finally-⊩≡˘ A B B≡A = A ≡˘⟨ B≡A ⟩⊩∎ B 

  finally-⊩≡≡ :  A  B PE.≡ C  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A  C
  finally-⊩≡≡ _ PE.refl A≡B = A≡B

  syntax finally-⊩≡≡ A B≡C A≡B = A ≡⟨ A≡B ⟩⊩∎≡ B≡C

  finally-⊩≡≡˘ :  A  B PE.≡ C  Γ ⊩⟨ l  B  A  Γ ⊩⟨ l  A  C
  finally-⊩≡≡˘ _ PE.refl B≡A = sym-⊩≡ B≡A

  syntax finally-⊩≡≡˘ A B≡C B≡A = A ≡˘⟨ B≡A ⟩⊩∎≡ B≡C

  finally-⊩≡⇐* :
     A  Γ  C ⇒* B  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A  C
  finally-⊩≡⇐* _ C⇒*B A≡B =
    trans-⊩≡ A≡B (sym-⊩≡ (⊩-⇐* C⇒*B (wf-⊩≡ A≡B .proj₂)))

  syntax finally-⊩≡⇐* A C⇒*B A≡B = A ≡⟨ A≡B ⟩⊩⇐* C⇒*B

  finally-⊩≡⇒* :
     A  Γ  B ⇒* C  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  A  C
  finally-⊩≡⇒* _ B⇒*C A≡B =
    case wf-⊩≡ A≡B of λ
      (_ , ⊩B) 
    trans-⊩≡ A≡B (⊩-⇒* B⇒*C ⊩B)

  syntax finally-⊩≡⇒* A B⇒*C A≡B = A ≡⟨ A≡B ⟩⊩⇒* B⇒*C

opaque

  -- Equational reasoning combinators for _⊩⟨_⟩_≡_∷_.

  infix -1
    _∎⟨_⟩⊩∷ finally-⊩≡∷ finally-⊩≡∷˘
  infix -2
    step-⊩≡∷-conv step-⊩≡∷-conv˘ step-⊩≡∷-conv-≡ step-⊩≡∷-conv-≡˘
  infixr -2
    step-⊩≡∷ step-⊩≡∷˘ step-⊩≡∷≡ step-⊩≡∷≡˘ step-⊩≡∷⇒* step-⊩≡∷⇒
    step-⊩≡∷⇐* step-⊩≡∷⇐ _≡⟨⟩⊩∷_ finally-⊩≡∷≡ finally-⊩≡∷≡˘
    finally-⊩≡∷⇐* finally-⊩≡∷⇒*

  step-⊩≡∷ :
     t  Γ ⊩⟨ l  u  v  A  Γ ⊩⟨ l′  t  u  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷ _ = flip trans-⊩≡∷

  syntax step-⊩≡∷ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷ u≡v

  step-⊩≡∷˘ :
     t  Γ ⊩⟨ l  u  v  A  Γ ⊩⟨ l′  u  t  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷˘ _ u≡v u≡t = trans-⊩≡∷ (sym-⊩≡∷ u≡t) u≡v

  syntax step-⊩≡∷˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷ u≡v

  step-⊩≡∷≡ :  t  Γ ⊩⟨ l  u  v  A  t PE.≡ u  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷≡ _ u≡v PE.refl = u≡v

  syntax step-⊩≡∷≡ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷≡ u≡v

  step-⊩≡∷≡˘ :  t  Γ ⊩⟨ l  u  v  A  u PE.≡ t  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷≡˘ _ u≡v PE.refl = u≡v

  syntax step-⊩≡∷≡˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷≡ u≡v

  step-⊩≡∷⇒* :
     t  Γ ⊩⟨ l  u  v  A  Γ  t ⇒* u  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷⇒* _ u≡v t⇒*u =
    trans-⊩≡∷ (⊩∷-⇐* t⇒*u (wf-⊩≡∷ u≡v .proj₁)) u≡v

  syntax step-⊩≡∷⇒* t u≡v t⇒*u = t ⇒*⟨ t⇒*u ⟩⊩∷ u≡v

  step-⊩≡∷⇒ :
     t  Γ ⊩⟨ l  u  v  A  Γ  t  u  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷⇒ _ u≡v t⇒u = step-⊩≡∷⇒* _ u≡v (redMany t⇒u)

  syntax step-⊩≡∷⇒ t u≡v t⇒u = t ⇒⟨ t⇒u ⟩⊩∷ u≡v

  step-⊩≡∷⇐* :
     t  Γ ⊩⟨ l  u  v  A  Γ  u ⇒* t  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷⇐* _ u≡v u⇒*t =
    trans-⊩≡∷ (sym-⊩≡∷ (⊩∷-⇒* u⇒*t (wf-⊩≡∷ u≡v .proj₁))) u≡v

  syntax step-⊩≡∷⇐* t u≡v u⇒*t = t ⇐*⟨ u⇒*t ⟩⊩∷ u≡v

  step-⊩≡∷⇐ :
     t  Γ ⊩⟨ l  u  v  A  Γ  u  t  A 
    Γ ⊩⟨ l  t  v  A
  step-⊩≡∷⇐ _ u≡v u⇒t = step-⊩≡∷⇐* _ u≡v (redMany u⇒t)

  syntax step-⊩≡∷⇐ t u≡v u⇒t = t ⇐⟨ u⇒t ⟩⊩∷ u≡v

  _≡⟨⟩⊩∷_ :  t  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  u  A
  _ ≡⟨⟩⊩∷ t≡u = t≡u

  step-⊩≡∷-conv :
    Γ ⊩⟨ l′  t  u  B  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷-conv t≡u A≡B = conv-⊩≡∷ (sym-⊩≡ A≡B) t≡u

  syntax step-⊩≡∷-conv t≡u A≡B =  A≡B ⟩⊩∷ t≡u

  step-⊩≡∷-conv˘ :
    Γ ⊩⟨ l′  t  u  B  Γ ⊩⟨ l  B  A  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷-conv˘ t≡u B≡A = conv-⊩≡∷ B≡A t≡u

  syntax step-⊩≡∷-conv˘ t≡u B≡A = ˘⟨ B≡A ⟩⊩∷ t≡u

  step-⊩≡∷-conv-≡ : Γ ⊩⟨ l  t  u  B  A PE.≡ B  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷-conv-≡ t≡u PE.refl = t≡u

  syntax step-⊩≡∷-conv-≡ t≡u A≡B =  A≡B ⟩⊩∷≡ t≡u

  step-⊩≡∷-conv-≡˘ : Γ ⊩⟨ l  t  u  B  B PE.≡ A  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷-conv-≡˘ t≡u PE.refl = t≡u

  syntax step-⊩≡∷-conv-≡˘ t≡u B≡A = ˘⟨ B≡A ⟩⊩∷≡ t≡u

  _∎⟨_⟩⊩∷ :  t  Γ ⊩⟨ l  t  A  Γ ⊩⟨ l  t  t  A
  _ ∎⟨ ⊩t ⟩⊩∷ = refl-⊩≡∷ ⊩t

  finally-⊩≡∷ :  t u  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  u  A
  finally-⊩≡∷ _ _ t≡u = t≡u

  syntax finally-⊩≡∷ t u t≡u = t ≡⟨ t≡u ⟩⊩∷∎ u 

  finally-⊩≡∷˘ :  t u  Γ ⊩⟨ l  u  t  A  Γ ⊩⟨ l  t  u  A
  finally-⊩≡∷˘ _ _ t≡u = sym-⊩≡∷ t≡u

  syntax finally-⊩≡∷˘ t u u≡t = t ≡˘⟨ u≡t ⟩⊩∷∎ u 

  finally-⊩≡∷≡ :
     t  u PE.≡ v  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷≡ _ PE.refl t≡u = t≡u

  syntax finally-⊩≡∷≡ t u≡v t≡u = t ≡⟨ t≡u ⟩⊩∷∎≡ u≡v

  finally-⊩≡∷≡˘ :
     t  u PE.≡ v  Γ ⊩⟨ l  u  t  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷≡˘ _ PE.refl u≡t = sym-⊩≡∷ u≡t

  syntax finally-⊩≡∷≡˘ t u≡v u≡t = t ≡˘⟨ u≡t ⟩⊩∷∎≡ u≡v

  finally-⊩≡∷⇐* :
     t  Γ  v ⇒* u  A  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷⇐* _ v⇒*u t≡u =
    trans-⊩≡∷ t≡u (sym-⊩≡∷ (⊩∷-⇐* v⇒*u (wf-⊩≡∷ t≡u .proj₂)))

  syntax finally-⊩≡∷⇐* t v⇒*u t≡u = t ≡⟨ t≡u ⟩⊩∷⇐* v⇒*u

  finally-⊩≡∷⇒* :
     t  Γ  u ⇒* v  A  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷⇒* _ u⇒*v t≡u =
    case wf-⊩≡∷ t≡u of λ
      (_ , ⊩u) 
    trans-⊩≡∷ t≡u (⊩∷-⇒* u⇒*v ⊩u)

  syntax finally-⊩≡∷⇒* t u⇒*v t≡u = t ≡⟨ t≡u ⟩⊩∷⇒* u⇒*v

opaque

  -- Equational reasoning combinators for _⊩⟨_⟩_≡_∷_ with explicit
  -- types.

  infix -1
    _∷_∎⟨_⟩⊩∷∷ finally-⊩≡∷∷ finally-⊩≡∷∷˘
  infix -2
    step-⊩≡∷∷-conv step-⊩≡∷∷-conv˘ step-⊩≡∷∷-conv-≡ step-⊩≡∷∷-conv-≡˘
  infixr -2
    step-⊩≡∷∷ step-⊩≡∷∷˘ step-⊩≡∷∷≡ step-⊩≡∷∷≡˘ step-⊩≡∷∷⇒* step-⊩≡∷∷⇒
    step-⊩≡∷∷⇐* step-⊩≡∷∷⇐ _∷_≡⟨⟩⊩∷∷_ finally-⊩≡∷∷≡ finally-⊩≡∷∷≡˘
    finally-⊩≡∷∷⇐* finally-⊩≡∷∷⇒*

  step-⊩≡∷∷ :
     t A 
    Γ ⊩⟨ l  u  v  A  Γ ⊩⟨ l′  t  u  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷ _ _ = step-⊩≡∷ _

  syntax step-⊩≡∷∷ t A u≡v t≡u = t  A ≡⟨ t≡u ⟩⊩∷∷ u≡v

  step-⊩≡∷∷˘ :
     t A 
    Γ ⊩⟨ l  u  v  A  Γ ⊩⟨ l′  u  t  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷˘ _ _ = step-⊩≡∷˘ _

  syntax step-⊩≡∷∷˘ t A u≡v u≡t = t  A ≡˘⟨ u≡t ⟩⊩∷∷ u≡v

  step-⊩≡∷∷≡ :
     t A  Γ ⊩⟨ l  u  v  A  t PE.≡ u  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷≡ _ _ = step-⊩≡∷≡ _

  syntax step-⊩≡∷∷≡ t A u≡v t≡u = t  A ≡⟨ t≡u ⟩⊩∷∷≡ u≡v

  step-⊩≡∷∷≡˘ :
     t A  Γ ⊩⟨ l  u  v  A  u PE.≡ t  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷≡˘ _ _ = step-⊩≡∷≡˘ _

  syntax step-⊩≡∷∷≡˘ t A u≡v u≡t = t  A ≡˘⟨ u≡t ⟩⊩∷∷≡ u≡v

  step-⊩≡∷∷⇒* :
     t A  Γ ⊩⟨ l  u  v  A  Γ  t ⇒* u  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷⇒* _ _ = step-⊩≡∷⇒* _

  syntax step-⊩≡∷∷⇒* t A u≡v t⇒*u = t  A ⇒*⟨ t⇒*u ⟩⊩∷∷ u≡v

  step-⊩≡∷∷⇒ :
     t A  Γ ⊩⟨ l  u  v  A  Γ  t  u  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷⇒ _ _ = step-⊩≡∷⇒ _

  syntax step-⊩≡∷∷⇒ t A u≡v t⇒u = t  A ⇒⟨ t⇒u ⟩⊩∷∷ u≡v

  step-⊩≡∷∷⇐* :
     t A  Γ ⊩⟨ l  u  v  A  Γ  u ⇒* t  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷⇐* _ _ = step-⊩≡∷⇐* _

  syntax step-⊩≡∷∷⇐* t A u≡v u⇒*t = t  A ⇐*⟨ u⇒*t ⟩⊩∷∷ u≡v

  step-⊩≡∷∷⇐ :
     t A  Γ ⊩⟨ l  u  v  A  Γ  u  t  A  Γ ⊩⟨ l  t  v  A
  step-⊩≡∷∷⇐ _ _ = step-⊩≡∷⇐ _

  syntax step-⊩≡∷∷⇐ t A u≡v u⇒t = t  A ⇐⟨ u⇒t ⟩⊩∷∷ u≡v

  _∷_≡⟨⟩⊩∷∷_ :  t A  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  u  A
  _  _ ≡⟨⟩⊩∷∷ t≡u = t≡u

  step-⊩≡∷∷-conv :
     A  Γ ⊩⟨ l′  t  u  B  Γ ⊩⟨ l  A  B  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷∷-conv _ = step-⊩≡∷-conv

  syntax step-⊩≡∷∷-conv A t≡u A≡B =  A  A≡B ⟩⊩∷∷ t≡u

  step-⊩≡∷∷-conv˘ :
     A  Γ ⊩⟨ l′  t  u  B  Γ ⊩⟨ l  B  A  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷∷-conv˘ _ = step-⊩≡∷-conv˘

  syntax step-⊩≡∷∷-conv˘ A t≡u B≡A =  A ˘⟨ B≡A ⟩⊩∷∷ t≡u

  step-⊩≡∷∷-conv-≡ :
     A  Γ ⊩⟨ l  t  u  B  A PE.≡ B  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷∷-conv-≡ _ = step-⊩≡∷-conv-≡

  syntax step-⊩≡∷∷-conv-≡ A t≡u A≡B =  A  A≡B ⟩⊩∷∷≡ t≡u

  step-⊩≡∷∷-conv-≡˘ :
     A  Γ ⊩⟨ l  t  u  B  B PE.≡ A  Γ ⊩⟨ l  t  u  A
  step-⊩≡∷∷-conv-≡˘ _ = step-⊩≡∷-conv-≡˘

  syntax step-⊩≡∷∷-conv-≡˘ A t≡u B≡A =  A ˘⟨ B≡A ⟩⊩∷∷≡ t≡u

  _∷_∎⟨_⟩⊩∷∷ :  t A  Γ ⊩⟨ l  t  A  Γ ⊩⟨ l  t  t  A
  _  _ ∎⟨ ⊩t ⟩⊩∷∷ = refl-⊩≡∷ ⊩t

  finally-⊩≡∷∷ :  t A u  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  u  A
  finally-⊩≡∷∷ _ _ _ t≡u = t≡u

  syntax finally-⊩≡∷∷ t A u t≡u = t  A ≡⟨ t≡u ⟩⊩∷∎∷ u 

  finally-⊩≡∷∷˘ :  t A u  Γ ⊩⟨ l  u  t  A  Γ ⊩⟨ l  t  u  A
  finally-⊩≡∷∷˘ _ _ _ t≡u = sym-⊩≡∷ t≡u

  syntax finally-⊩≡∷∷˘ t A u u≡t = t  A ≡˘⟨ u≡t ⟩⊩∷∎∷ u 

  finally-⊩≡∷∷≡ :
     t A  u PE.≡ v  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷∷≡ _ _ = finally-⊩≡∷≡ _

  syntax finally-⊩≡∷∷≡ t A u≡v t≡u = t  A ≡⟨ t≡u ⟩⊩∷∎∷≡ u≡v

  finally-⊩≡∷∷≡˘ :
     t A  u PE.≡ v  Γ ⊩⟨ l  u  t  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷∷≡˘ _ _ = finally-⊩≡∷≡˘ _

  syntax finally-⊩≡∷∷≡˘ t A u≡v u≡t = t  A ≡˘⟨ u≡t ⟩⊩∷∎∷≡ u≡v

  finally-⊩≡∷∷⇐* :
     t A  Γ  v ⇒* u  A  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷∷⇐* _ _ = finally-⊩≡∷⇐* _

  syntax finally-⊩≡∷∷⇐* t A v⇒*u t≡u = t  A ≡⟨ t≡u ⟩⊩∷∷⇐* v⇒*u

  finally-⊩≡∷∷⇒* :
     t A  Γ  u ⇒* v  A  Γ ⊩⟨ l  t  u  A  Γ ⊩⟨ l  t  v  A
  finally-⊩≡∷∷⇒* _ _ = finally-⊩≡∷⇒* _

  syntax finally-⊩≡∷∷⇒* t A v⇒*u t≡u = t  A ≡⟨ t≡u ⟩⊩∷∷⇒* v⇒*u

------------------------------------------------------------------------
-- Embedding

opaque
  unfolding emb-≤-⊩

  -- Embedding for _⊩⟨_⟩_.

  emb-⊩ :
    l ≤ᵘ l′ 
    Γ ⊩⟨ l  A 
    Γ ⊩⟨ l′  A
  emb-⊩ = emb-≤-⊩

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Embedding for _⊩⟨_⟩_≡_.

  emb-⊩≡ :
    l ≤ᵘ l′ 
    Γ ⊩⟨ l  A  B 
    Γ ⊩⟨ l′  A  B
  emb-⊩≡ p (⊩A , ⊩B , A≡B) =
      emb-≤-⊩ p ⊩A
    , emb-≤-⊩ p ⊩B
    , emb-≤-⊩≡ A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- Embedding for _⊩⟨_⟩_≡_∷_.

  emb-⊩≡∷ :
    l ≤ᵘ l′ 
    Γ ⊩⟨ l  t  u  A 
    Γ ⊩⟨ l′  t  u  A
  emb-⊩≡∷ p (⊩A , t≡u) =
      emb-≤-⊩ p ⊩A
    , emb-≤-⊩≡∷ t≡u

opaque

  -- Embedding for _⊩⟨_⟩_∷_.

  emb-⊩∷ :
    l ≤ᵘ l′ 
    Γ ⊩⟨ l  t  A 
    Γ ⊩⟨ l′  t  A
  emb-⊩∷ l≤l′ =
    ⊩∷⇔⊩≡∷ .proj₂ ∘→ emb-⊩≡∷ l≤l′ ∘→ ⊩∷⇔⊩≡∷ .proj₁

------------------------------------------------------------------------
-- Some introduction lemmas

opaque
  unfolding _⊩⟨_⟩_∷_

  -- An introduction lemma for _⊩⟨_⟩_∷_.

  ⊩∷-intro :
    (⊩A : Γ ⊩⟨ l  A) 
    Γ ⊩⟨ l  t  A / ⊩A 
    Γ ⊩⟨ l  t  A
  ⊩∷-intro = _,_

opaque
  unfolding _⊩⟨_⟩_≡_

  -- An introduction lemma for _⊩⟨_⟩_≡_.

  ⊩≡-intro :
    (⊩A : Γ ⊩⟨ l  A) 
    Γ ⊩⟨ l  B 
    Γ ⊩⟨ l  A  B / ⊩A 
    Γ ⊩⟨ l  A  B
  ⊩≡-intro ⊩A ⊩B A≡B = ⊩A , ⊩B , A≡B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- An introduction lemma for _⊩⟨_⟩_≡_∷_.

  ⊩≡∷-intro :
    (⊩A : Γ ⊩⟨ l  A) 
    Γ ⊩⟨ l  t  u  A / ⊩A 
    Γ ⊩⟨ l  t  u  A
  ⊩≡∷-intro ⊩A t≡u =
    ⊩A , t≡u

------------------------------------------------------------------------
-- Neutral types and terms

opaque

  -- Neutral types that satisfy certain properties are reducible (if
  -- Neutrals-included holds).

  neutral-⊩ :
    Neutrals-included 
    Neutral A 
    Γ ⊢≅ A 
    Γ ⊩⟨ l  A
  neutral-⊩ = neu

opaque
  unfolding _⊩⟨_⟩_∷_

  -- Neutral terms that satisfy certain properties are reducible (if
  -- Neutrals-included holds).

  neutral-⊩∷ :
    Neutrals-included 
    Γ ⊩⟨ l  A 
    Neutral t 
    Γ ⊢~ t  A 
    Γ ⊩⟨ l  t  A
  neutral-⊩∷ inc ⊩A t-ne t~t =
    ⊩A , neuTerm inc ⊩A t-ne t~t

opaque
  unfolding _⊩⟨_⟩_≡_

  -- Reducible equality holds between neutral types that satisfy
  -- certain properties.

  neutral-⊩≡ :
    Γ ⊩⟨ l  A 
    Γ ⊩⟨ l  B 
    Neutral A 
    Neutral B 
    Γ  A  B 
    Γ ⊩⟨ l  A  B
  neutral-⊩≡ ⊩A ⊩B A-ne B-ne A≅B =
    ⊩A , ⊩B , neuEq ⊩A A-ne B-ne A≅B

opaque
  unfolding _⊩⟨_⟩_≡_∷_

  -- Reducible equality holds between neutral terms that satisfy
  -- certain properties (if Neutrals-included holds).

  neutral-⊩≡∷ :
    Neutrals-included 
    Γ ⊩⟨ l  A 
    Neutral t 
    Neutral u 
    Γ  t ~ u  A 
    Γ ⊩⟨ l  t  u  A
  neutral-⊩≡∷ inc ⊩A t-ne u-ne t~u =
    ⊩A , neuEqTerm inc ⊩A t-ne u-ne t~u

opaque

  -- A characterisation lemma for _⊩⟨_⟩_.

  ⊩ne⇔ :
    Neutral A 
    Γ ⊩⟨ l  A  (Neutrals-included × Γ ⊢≅ A)
  ⊩ne⇔ A-ne =
       ⊩A 
         case ne-view A-ne ⊩A of λ {
           (ne (ne inc B A⇒*B _ B≅B)) 
         case whnfRed* A⇒*B (ne A-ne) of λ {
           PE.refl 
         inc , B≅B }})
    ,  (inc , A≅A)  neu inc A-ne A≅A)

opaque
  unfolding _⊩⟨_⟩_≡_

  -- A characterisation lemma for _⊩⟨_⟩_≡_.

  ⊩ne≡⇔ :
    Neutral A 
    Γ ⊩⟨ l  A  B 
    (Neutrals-included ×  λ C  Neutral C × Γ  B ⇒* C × Γ  A  C)
  ⊩ne≡⇔ {A} {B} A-ne =
       (⊩A , ⊩B , A≡B) 
         case ne-view A-ne ⊩A of λ {
           (ne (ne inc _ A⇒*A′ _ _)) 
         case A≡B of λ
           (ne₌ inc C B⇒*C C-ne A′≅C) 
         case whnfRed* A⇒*A′ (ne A-ne) of λ {
           PE.refl 
         inc , C , C-ne , B⇒*C , A′≅C }})
    ,  (inc , C , C-ne , B⇒*C , A≅C) 
         let ≅A , ≅C = wf-⊢≅ A≅C in
         sym-⊩≡
           (B  ⇒*⟨ B⇒*C ⟩⊩
            C  ≡⟨ neutral-⊩≡
                    (⊩ne⇔ C-ne .proj₂ (inc , ≅C))
                    (⊩ne⇔ A-ne .proj₂ (inc , ≅A))
                    C-ne A-ne (≅-sym A≅C) ⟩⊩∎
            A  ))

opaque

  -- A characterisation lemma for _⊩⟨_⟩_≡_.

  ⊩ne≡ne⇔ :
    Neutral A 
    Neutral B 
    Γ ⊩⟨ l  A  B  (Neutrals-included × Γ  A  B)
  ⊩ne≡ne⇔ {A} {B} {Γ} {l} A-ne B-ne =
    Γ ⊩⟨ l  A  B                                                    ⇔⟨ ⊩ne≡⇔ A-ne 
    (Neutrals-included ×  λ C  Neutral C × Γ  B ⇒* C × Γ  A  C)  ⇔⟨ (Σ-cong-⇔ λ _ 
                                                                             (_ , _ , B⇒*C , A≅C) 
                                                                               case whnfRed* B⇒*C (ne B-ne) of λ {
                                                                                 PE.refl 
                                                                               A≅C })
                                                                          ,  A≅B  _ , B-ne , id (wf-⊢≡ (≅-eq A≅B) .proj₂) , A≅B))
                                                                       
    Neutrals-included × Γ  A  B                                     □⇔

opaque
  unfolding _⊩⟨_⟩_≡_∷_ ⊩ne⇔ neu

  -- A characterisation lemma for _⊩⟨_⟩_≡_∷_.

  ⊩≡∷ne⇔ :
    Neutral A 
    Γ ⊩⟨ l  t₁  t₂  A 
    (Γ ⊢≅ A ×
     ∃₂ λ u₁ u₂ 
     Γ  t₁ ⇒* u₁  A × Γ  t₂ ⇒* u₂  A ×
     Γ ⊩neNf u₁  u₂  A)
  ⊩≡∷ne⇔ {A} A-ne =
       (⊩A , t₁≡t₂) 
         case ne-view A-ne ⊩A of λ {
           (ne (ne inc _ A⇒*A′ _ _)) 
         case t₁≡t₂ of λ
           (neₜ₌ u₁ u₂ t₁⇒*u₁ t₂⇒*u₂ u₁≡u₂) 
         case whnfRed* A⇒*A′ (ne A-ne) of λ {
           PE.refl 
         ⊩ne⇔ A-ne .proj₁ ⊩A .proj₂ ,
         u₁ , u₂ , t₁⇒*u₁ , t₂⇒*u₂ , u₁≡u₂ }})
    ,  (≅A , u₁ , u₂ , t₁⇒*u₁ , t₂⇒*u₂ , u₁≡u₂@(neNfₜ₌ inc _ _ _)) 
         ⊩ne⇔ A-ne .proj₂ (inc , ≅A) ,
         neₜ₌ u₁ u₂ t₁⇒*u₁ t₂⇒*u₂ u₁≡u₂)

opaque
  unfolding _⊩⟨_⟩_∷_ ⊩ne⇔ neu

  -- A characterisation lemma for _⊩⟨_⟩_∷_.

  ⊩∷ne⇔ :
    Neutral A 
    Γ ⊩⟨ l  t  A 
    (Neutrals-included × Γ ⊢≅ A ×
      λ u  Γ  t ⇒* u  A × Neutral u × Γ ⊢~ u  A)
  ⊩∷ne⇔ {A} {Γ} {l} {t} A-ne =
    Γ ⊩⟨ l  t  A                                     ⇔⟨ ⊩∷⇔⊩≡∷ 

    Γ ⊩⟨ l  t  t  A                                 ⇔⟨ ⊩≡∷ne⇔ A-ne 

    (Γ ⊢≅ A ×
     ∃₂ λ u₁ u₂ 
     Γ  t ⇒* u₁  A × Γ  t ⇒* u₂  A ×
     Γ ⊩neNf u₁  u₂  A)                              ⇔⟨  (≅A , _ , _ , t⇒*u₁ , _ , neNfₜ₌ inc u₁-ne _ u₁~u₂) 
                                                             inc , ≅A , _ , t⇒*u₁ , u₁-ne , wf-⊢~∷ u₁~u₂ .proj₁)
                                                        ,  (inc , ≅A , _ , t⇒*u , u-ne , ~u) 
                                                             ≅A , _ , _ , t⇒*u , t⇒*u , neNfₜ₌ inc u-ne u-ne ~u)
                                                        
    (Neutrals-included × Γ ⊢≅ A ×
      λ u  Γ  t ⇒* u  A × Neutral u × Γ ⊢~ u  A)  □⇔