open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Fundamental.Universe
{a} {M : Set a}
{𝕄 : Modality M}
{R : Type-restrictions 𝕄}
(as : Assumptions R)
where
open import Definition.Untyped M
open import Graded.Context 𝕄
open import Graded.Erasure.LogicalRelation as
open import Graded.Erasure.LogicalRelation.Hidden as
import Graded.Erasure.Target as T
open import Graded.Mode 𝕄
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
private variable
Γ : Con Term _
γ : Conₘ _
m : Mode
l : Universe-level
opaque
Uʳ : γ ▸ Γ ⊩ʳ U l ∷[ m ] U (1+ l)
Uʳ =
▸⊩ʳ∷⇔ .proj₂ λ _ _ →
®∷→®∷◂ (®∷U⇔ .proj₂ (_ , ≤ᵘ-refl , Uᵣ (λ { PE.refl → T.refl })))