open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Hidden
{a} {M : Set a}
{𝕄 : Modality M}
{TR : Type-restrictions 𝕄}
(as : Assumptions TR)
where
open Assumptions as
open Modality 𝕄 hiding (_≤_; _<_)
open Type-restrictions TR
open import Definition.LogicalRelation TR as L
open import Definition.LogicalRelation.Fundamental TR
open import Definition.LogicalRelation.Fundamental.Reducibility TR
open import Definition.LogicalRelation.Hidden TR
import Definition.LogicalRelation.Irrelevance TR as IR
open import Definition.LogicalRelation.ShapeView TR
open import Definition.LogicalRelation.Substitution TR
open import Definition.LogicalRelation.Substitution.Introductions TR
open import Definition.LogicalRelation.Weakening.Restricted TR
open import Definition.Typed TR
open import Definition.Typed.Consequences.Inversion TR
open import Definition.Typed.Inversion TR
open import Definition.Typed.Properties TR
open import Definition.Typed.Well-formed TR
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Graded.Context 𝕄
open import Graded.Context.Properties 𝕄
open import Graded.Erasure.Extraction 𝕄
open import Graded.Erasure.LogicalRelation as
open import Graded.Erasure.LogicalRelation.Conversion as
open import Graded.Erasure.LogicalRelation.Irrelevance as
open import Graded.Erasure.LogicalRelation.Reduction as
open import Graded.Erasure.Target as T using (strict)
import Graded.Erasure.Target.Properties as TP
open import Graded.Modality.Properties 𝕄
open import Graded.Mode 𝕄
open import Tools.Bool
open import Tools.Empty
open import Tools.Fin
open import Tools.Function
open import Tools.Level
open import Tools.Nat using (Nat)
open import Tools.Product as Σ
open import Tools.PropositionalEquality as PE using (_≢_)
import Tools.Reasoning.PropositionalEquality
open import Tools.Relation
open import Tools.Unit
private variable
n : Nat
Γ : Con Term _
A B t t′ t₁ t₂ : Term _
v v′ : T.Term _
σ : Subst _ _
σ′ : T.Subst _ _
γ δ : Conₘ _
p q : M
m : Mode
s : Strength
l l′ : Universe-level
ok : T _
opaque
infix 19 _®_∷_
_®_∷_ : Term k → T.Term k → Term k → Set a
t ® v ∷ A =
∃₂ λ l (⊩A : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v ∷ A / ⊩A
opaque
unfolding _®_∷_ ⊩U⇔
®∷U⇔ : t ® v ∷ U l ⇔ (∃ λ l′ → l <ᵘ l′ × t ® v ∷U)
®∷U⇔ {t} {v} {l} =
t ® v ∷ U l ⇔⟨ id⇔ ⟩
(∃₂ λ l′ (⊩U : Δ ⊩⟨ l′ ⟩ U l) → t ®⟨ l′ ⟩ v ∷ U l / ⊩U) ⇔⟨ (λ (_ , ⊩U , t®v) →
_
, ⊩U⇔ .proj₁ ⊩U
, irrelevanceTerm ⊩U (Uᵣ (U-elim ⊩U)) t®v)
, Σ.map idᶠ (Σ.map (⊩U⇔ .proj₂) idᶠ)
⟩
(∃ λ l′ → (l <ᵘ l′ × ⊢ Δ) × t ® v ∷U) ⇔⟨ (λ (_ , (l< , _) , t®v) → _ , l< , t®v)
, (λ (_ , l< , t®v) → _ , (l< , ⊢Δ) , t®v)
⟩
(∃ λ l′ → l <ᵘ l′ × t ® v ∷U) □⇔
opaque
unfolding _®_∷_
®∷Empty⇔ : t ® v ∷ Empty ⇔ t ® v ∷Empty
®∷Empty⇔ =
(λ (_ , ⊩Empty′ , t®v) →
irrelevanceTerm {l′ = 0} ⊩Empty′
(Emptyᵣ (Empty-elim ⊩Empty′)) t®v)
, (λ ())
opaque
unfolding _®_∷_ ⊩Unit⇔ whrDet*
®∷Unit⇔ : t ® v ∷ Unit s l ⇔ t ® v ∷Unit⟨ s , l ⟩
®∷Unit⇔ {l} =
(λ (_ , ⊩U , t®v) →
let ⊩U′ = ⊩Unit⇔ .proj₂ (≤ᵘ-refl , ⊩Unit⇔ .proj₁ ⊩U .proj₂) in
irrelevanceTerm ⊩U
(Unitᵣ (Unit-elim ⊩U′)) t®v)
, (λ t®v →
l
, ⊩Unit⇔ .proj₂
( ≤ᵘ-refl
, ⊢Δ
, (case t®v of λ {
(starᵣ t⇒* _) →
inversion-Unit (wf-⊢∷ (wf-⇛ t⇒* .proj₁)) })
)
, t®v)
opaque
unfolding _®_∷_ ⊩ℕ⇔
®∷ℕ⇔ : t ® v ∷ ℕ ⇔ t ® v ∷ℕ
®∷ℕ⇔ =
(λ (_ , ⊩ℕ′ , t®v) →
irrelevanceTerm {l′ = 0} ⊩ℕ′
(ℕᵣ (ℕ-elim ⊩ℕ′)) t®v)
, (λ t®v → 0 , ⊩ℕ⇔ .proj₂ ⊢Δ , t®v)
opaque
unfolding _®_∷_ ⊩Id⇔
®∷Id⇔ :
t ® v ∷ Id A t₁ t₂ ⇔
(Δ ⊢ A × t ® v ∷Id⟨ A ⟩⟨ t₁ ⟩⟨ t₂ ⟩)
®∷Id⇔ =
(λ (_ , ⊩Id , t®v) →
case Id-elim ⊩Id of λ
⊩Id′ →
case irrelevanceTerm ⊩Id (Idᵣ ⊩Id′) t®v of λ {
(rflᵣ t⇒* ⇒*↯) →
escape-⊩ (wf-⊩∷ $ ⊩Id⇔ .proj₁ ⊩Id .proj₁)
, rflᵣ (conv-⇛ t⇒* (sym (subset* (_⊩ₗId_.⇒*Id ⊩Id′))))
⇒*↯ })
, (λ (⊢A , t®v) →
case reducible-⊩ ⊢A of λ
(l , ⊩A) →
l
, ⊩Id⇔ .proj₂
(case t®v of λ {
(rflᵣ t⇒* _) →
case inversion-Id (wf-⊢∷ (wf-⇛ t⇒* .proj₁)) of λ
(_ , ⊢t₁ , ⊢t₂) →
level-⊩∷ ⊩A (reducible-⊩∷ ⊢t₁ .proj₂)
, level-⊩∷ ⊩A (reducible-⊩∷ ⊢t₂ .proj₂) })
, t®v)
opaque
unfolding _®_∷_ ⊩ΠΣ⇔
®∷Π⇔ :
t ® v ∷ Π p , q ▷ A ▹ B ⇔
(Δ ⊢ Π p , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ → Δ ⊢ t′ ∷ A →
(p PE.≡ 𝟘 → t ∘⟨ 𝟘 ⟩ t′ ® app-𝟘 str v ∷ B [ t′ ]₀) ×
(p ≢ 𝟘 →
∀ v′ → t′ ® v′ ∷ A →
t ∘⟨ p ⟩ t′ ® v T.∘⟨ str ⟩ v′ ∷ B [ t′ ]₀)))
®∷Π⇔ {p} {B} =
(λ (_ , ⊩Π , t®v) →
case B-elim ⊩Π of λ {
⊩Π′@record{} →
case irrelevanceTerm ⊩Π (Bᵣ _ ⊩Π′) t®v of λ
t®v →
escape-⊩ ⊩Π , t®v .proj₁
, λ t′ ⊢t′ →
case B-PE-injectivity (BΠ _ _) (BΠ _ _)
(whnfRed* (_⊩ₗB⟨_⟩_.D ⊩Π′) ΠΣₙ) of λ {
(PE.refl , PE.refl , _) →
case reducible-⊩∷ $
PE.subst (_⊢_∷_ _ _) (PE.sym $ wk-id _) ⊢t′ of λ
(_ , ⊩A , ⊩t′) →
case IR.irrelevanceTerm ⊩A (_⊩ₗB⟨_⟩_.[F] ⊩Π′ (id ⊢Δ))
⊩t′ of λ
⊩t′ →
case PE.subst (_⊩⟨_⟩_ _ _)
(PE.cong _[ _ ]₀ $ wk-lift-id B) $
_⊩ₗB⟨_⟩_.[G] ⊩Π′ (id ⊢Δ) ⊩t′ of λ
⊩B[t′] →
(λ { PE.refl →
_ , ⊩B[t′]
, irrelevanceTerm′ (PE.cong _[ t′ ]₀ $ wk-lift-id B)
(_⊩ₗB⟨_⟩_.[G] ⊩Π′ (id ⊢Δ) ⊩t′) ⊩B[t′]
(Π-®-𝟘 (is-𝟘? 𝟘) (t®v .proj₂ ⊩t′)) })
, (λ p≢𝟘 _ t′®v′ →
_ , ⊩B[t′]
, irrelevanceTerm′ (PE.cong _[ t′ ]₀ $ wk-lift-id B)
(_⊩ₗB⟨_⟩_.[G] ⊩Π′ (id ⊢Δ) ⊩t′) ⊩B[t′]
(Π-®-ω p≢𝟘 (is-𝟘? p) (t®v .proj₂ ⊩t′)
(irrelevanceTerm′ (PE.sym $ wk-id _)
(t′®v′ .proj₂ .proj₁)
(_⊩ₗB⟨_⟩_.[F] ⊩Π′ (id ⊢Δ)) $
t′®v′ .proj₂ .proj₂))) }})
, (λ (⊢Π , v⇒*lam , t®v) →
_
, ⊩ΠΣ⇔ .proj₂ (⊩ΠΣ⇔ .proj₁ (reducible-⊩ ⊢Π .proj₂))
, v⇒*lam
, λ ⊩t′ → lemma (is-𝟘? p) t®v ⊩t′)
where
lemma :
{⊩A : Δ ⊩⟨ l ⟩ _} {⊩B : Δ ⊩⟨ l ⟩ _}
(d : Dec (p PE.≡ 𝟘)) →
(∀ t′ → Δ ⊢ t′ ∷ A →
(p PE.≡ 𝟘 → t ∘⟨ 𝟘 ⟩ t′ ® app-𝟘 str v ∷ B [ t′ ]₀) ×
(p ≢ 𝟘 →
∀ v′ → t′ ® v′ ∷ A →
t ∘⟨ p ⟩ t′ ® v T.∘⟨ str ⟩ v′ ∷ B [ t′ ]₀)) →
Δ ⊩⟨ l ⟩ t′ ∷ wk id A / ⊩A →
Π-® l A B t t′ v ⊩A ⊩B p d
lemma {⊩A} {⊩B} (yes PE.refl) t®v ⊩t′ =
case PE.subst (_⊩⟨_⟩_ _ _) (wk-id _) ⊩A of λ
⊩A′ →
case t®v _ (PE.subst (_⊢_∷_ _ _) (wk-id _) $ escape-⊩∷ (⊩A , ⊩t′))
.proj₁ PE.refl of λ
(_ , ⊩B′ , tt′®v) →
irrelevanceTerm′ (PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id B) ⊩B′ ⊩B
tt′®v
lemma {⊩A} {⊩B} (no p≢𝟘) t®v ⊩t′ t′®v′ =
case PE.subst (_⊩⟨_⟩_ _ _) (wk-id _) ⊩A of λ
⊩A′ →
case t®v _ (PE.subst (_⊢_∷_ _ _) (wk-id _) $ escape-⊩∷ (⊩A , ⊩t′))
.proj₂
p≢𝟘 _
(_ , ⊩A′ , irrelevanceTerm′ (wk-id _) ⊩A ⊩A′ t′®v′) of λ
(_ , ⊩B′ , tt′®vv′) →
irrelevanceTerm′ (PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id B) ⊩B′ ⊩B
tt′®vv′
opaque
®∷Πω⇔ :
p ≢ 𝟘 →
t ® v ∷ Π p , q ▷ A ▹ B ⇔
(Δ ⊢ Π p , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ v′ → Δ ⊢ t′ ∷ A → t′ ® v′ ∷ A →
t ∘⟨ p ⟩ t′ ® v T.∘⟨ str ⟩ v′ ∷ B [ t′ ]₀))
®∷Πω⇔ {p} {t} {v} {q} {A} {B} p≢𝟘 =
t ® v ∷ Π p , q ▷ A ▹ B ⇔⟨ ®∷Π⇔ ⟩
Δ ⊢ Π p , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ → Δ ⊢ t′ ∷ A →
(p PE.≡ 𝟘 → t ∘⟨ 𝟘 ⟩ t′ ® app-𝟘 str v ∷ B [ t′ ]₀) ×
(p ≢ 𝟘 →
∀ v′ → t′ ® v′ ∷ A →
t ∘⟨ p ⟩ t′ ® v T.∘⟨ str ⟩ v′ ∷ B [ t′ ]₀)) ⇔⟨ (Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ → Π-cong-⇔ λ _ →
(λ hyp v′ ⊢t′ → hyp ⊢t′ .proj₂ p≢𝟘 v′)
, (λ hyp ⊢t′ → ⊥-elim ∘→ p≢𝟘 , λ _ v′ → hyp v′ ⊢t′)) ⟩
Δ ⊢ Π p , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ v′ → Δ ⊢ t′ ∷ A → t′ ® v′ ∷ A →
t ∘⟨ p ⟩ t′ ® v T.∘⟨ str ⟩ v′ ∷ B [ t′ ]₀) □⇔
opaque
®∷Π₀⇔ :
t ® v ∷ Π 𝟘 , q ▷ A ▹ B ⇔
(Δ ⊢ Π 𝟘 , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ → Δ ⊢ t′ ∷ A → t ∘⟨ 𝟘 ⟩ t′ ® app-𝟘 str v ∷ B [ t′ ]₀))
®∷Π₀⇔ {t} {v} {q} {A} {B} =
t ® v ∷ Π 𝟘 , q ▷ A ▹ B ⇔⟨ ®∷Π⇔ ⟩
Δ ⊢ Π 𝟘 , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ → Δ ⊢ t′ ∷ A →
(𝟘 PE.≡ 𝟘 → t ∘⟨ 𝟘 ⟩ t′ ® app-𝟘 str v ∷ B [ t′ ]₀) ×
(𝟘 ≢ 𝟘 →
∀ v′ → t′ ® v′ ∷ A →
t ∘⟨ 𝟘 ⟩ t′ ® v T.∘⟨ str ⟩ v′ ∷ B [ t′ ]₀)) ⇔⟨ (Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ → Π-cong-⇔ λ _ → Π-cong-⇔ λ _ →
(λ hyp → hyp .proj₁ PE.refl)
, (λ hyp → (λ _ → hyp) , ⊥-elim ∘→ (_$ PE.refl))) ⟩
Δ ⊢ Π 𝟘 , q ▷ A ▹ B ×
(str PE.≡ strict → ∃ λ v′ → v T.⇒* T.lam v′) ×
(∀ t′ → Δ ⊢ t′ ∷ A → t ∘⟨ 𝟘 ⟩ t′ ® app-𝟘 str v ∷ B [ t′ ]₀) □⇔
opaque
unfolding _®_∷_ ⊩ΠΣ⇔
®∷Σ⇔ :
t ® v ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ⇔
(Δ ⊢ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
∃₃ λ t₁ t₂ v₂ →
t ⇛ prod s p t₁ t₂ ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
t₂ ® v₂ ∷ B [ t₁ ]₀ ×
(p PE.≡ 𝟘 → v T.⇒* v₂) ×
(p ≢ 𝟘 → ∃ λ v₁ → v T.⇒* T.prod v₁ v₂ × t₁ ® v₁ ∷ A))
®∷Σ⇔ {t} {v} {s} {p} {q} {A} {B} =
(λ (_ , ⊩Σ , t®v) →
case B-elim ⊩Σ of λ {
⊩Σ′@record{} →
case irrelevanceTerm ⊩Σ (Bᵣ _ ⊩Σ′) t®v of λ
(t₁ , t₂ , t⇒ , ⊩t₁ , v₂ , t₂®v₂ , rest) →
case B-PE-injectivity (BΣ _ _ _) (BΣ _ _ _)
(whnfRed* (_⊩ₗB⟨_⟩_.D ⊩Σ′) ΠΣₙ) of λ {
(PE.refl , PE.refl , _) →
let ⊩wk-A = _⊩ₗB⟨_⟩_.[F] ⊩Σ′ (id ⊢Δ)
⊩wk-B[t₁] = _⊩ₗB⟨_⟩_.[G] ⊩Σ′ (id ⊢Δ) ⊩t₁
in
case PE.subst (_⊩⟨_⟩_ _ _) (wk-id _) ⊩wk-A of λ
⊩A →
case PE.subst (_⊩⟨_⟩_ _ _) (PE.cong _[ t₁ ]₀ $ wk-lift-id B)
⊩wk-B[t₁] of λ
⊩B[t₁] →
(Δ ⊢ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
∃₃ λ t₁ t₂ v₂ →
t ⇛ prod s p t₁ t₂ ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
t₂ ® v₂ ∷ B [ t₁ ]₀ ×
(p PE.≡ 𝟘 → v T.⇒* v₂) ×
(p ≢ 𝟘 → ∃ λ v₁ → v T.⇒* T.prod v₁ v₂ × t₁ ® v₁ ∷ A)) ∋
escape-⊩ ⊩Σ , t₁ , t₂ , v₂ , t⇒
, ( _
, ⊩B[t₁]
, irrelevanceTerm′ (PE.cong _[ t₁ ]₀ $ wk-lift-id B)
⊩wk-B[t₁] ⊩B[t₁] t₂®v₂
)
, (λ { PE.refl → Σ-®-𝟘 rest })
, (λ p≢𝟘 →
case Σ-®-ω p≢𝟘 rest of λ
(v₁ , v⇒ , t₁®v₁) →
v₁ , v⇒ ,
(_ , ⊩A , irrelevanceTerm′ (wk-id _) ⊩wk-A ⊩A t₁®v₁)) }})
, (λ (⊢Σ , _ , _ , v₂ , t⇒*prod , (_ , ⊩B , t₂®v₂) , hyp₁ , hyp₂) →
case ⊩ΠΣ⇔ .proj₁ (reducible-⊩ ⊢Σ .proj₂) of λ
⊩Σ′@(_ , rest) →
let ⊩wk-A , wk-B≡wk-B = rest (id ⊢Δ) in
case inversion-prod-Σ (wf-⇛ t⇒*prod .proj₂) of λ
(⊢t₁ , _) →
case reducible-⊩∷ ⊢t₁ of λ
(_ , ⊩A , ⊩t₁) →
case IR.irrelevanceTerm′ (PE.sym $ wk-id _) ⊩A ⊩wk-A ⊩t₁ of λ
⊩t₁ →
_ , ⊩ΠΣ⇔ .proj₂ ⊩Σ′ , _ , _ , t⇒*prod , ⊩t₁ , v₂
, irrelevanceTerm′ (PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id B)
⊩B (wf-⊩≡ (wk-B≡wk-B (refl-⊩≡∷ (⊩wk-A , ⊩t₁))) .proj₁)
t₂®v₂
, (case is-𝟘? p of λ where
(yes PE.refl) → Σ-®-intro-𝟘 (hyp₁ PE.refl) PE.refl
(no p≢𝟘) →
case hyp₂ p≢𝟘 of λ
(v₁ , v⇒*prod , (_ , ⊩A′ , t₁®v₁)) →
Σ-®-intro-ω v₁ v⇒*prod
(irrelevanceTerm′ (PE.sym $ wk-id _) ⊩A′ ⊩wk-A t₁®v₁)
p≢𝟘))
opaque
®∷Σω⇔ :
p ≢ 𝟘 →
t ® v ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ⇔
(Δ ⊢ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
∃₄ λ t₁ t₂ v₁ v₂ →
t ⇛ prod s p t₁ t₂ ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
v T.⇒* T.prod v₁ v₂ ×
t₁ ® v₁ ∷ A ×
t₂ ® v₂ ∷ B [ t₁ ]₀)
®∷Σω⇔ {p} {t} {v} {s} {q} {A} {B} p≢𝟘 =
t ® v ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ⇔⟨ ®∷Σ⇔ ⟩
(Δ ⊢ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
∃₃ λ t₁ t₂ v₂ →
t ⇛ prod s p t₁ t₂ ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
t₂ ® v₂ ∷ B [ t₁ ]₀ ×
(p PE.≡ 𝟘 → v T.⇒* v₂) ×
(p ≢ 𝟘 → ∃ λ v₁ → v T.⇒* T.prod v₁ v₂ × t₁ ® v₁ ∷ A)) ⇔⟨ (Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ →
(λ (v₂ , t⇒* , t₂®v₂ , _ , hyp) →
case hyp p≢𝟘 of λ
(v₁ , v⇒* , t₁®v₁) →
v₁ , v₂ , t⇒* , v⇒* , t₁®v₁ , t₂®v₂)
, (λ (v₁ , v₂ , t⇒* , v⇒* , t₁®v₁ , t₂®v₂) →
v₂ , t⇒* , t₂®v₂ , ⊥-elim ∘→ p≢𝟘 , λ _ → v₁ , v⇒* , t₁®v₁)) ⟩
(Δ ⊢ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
∃₄ λ t₁ t₂ v₁ v₂ →
t ⇛ prod s p t₁ t₂ ∷ Σ⟨ s ⟩ p , q ▷ A ▹ B ×
v T.⇒* T.prod v₁ v₂ ×
t₁ ® v₁ ∷ A ×
t₂ ® v₂ ∷ B [ t₁ ]₀) □⇔
opaque
®∷Σ₀⇔ :
t ® v ∷ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ⇔
(Δ ⊢ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ×
∃₃ λ t₁ t₂ v′ →
t ⇛ prod s 𝟘 t₁ t₂ ∷ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ×
v T.⇒* v′ ×
t₂ ® v′ ∷ B [ t₁ ]₀)
®∷Σ₀⇔ {t} {v} {s} {q} {A} {B} =
t ® v ∷ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ⇔⟨ ®∷Σ⇔ ⟩
(Δ ⊢ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ×
∃₃ λ t₁ t₂ v₂ →
t ⇛ prod s 𝟘 t₁ t₂ ∷ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ×
t₂ ® v₂ ∷ B [ t₁ ]₀ ×
(𝟘 PE.≡ 𝟘 → v T.⇒* v₂) ×
(𝟘 ≢ 𝟘 → ∃ λ v₁ → v T.⇒* T.prod v₁ v₂ × t₁ ® v₁ ∷ A)) ⇔⟨ (Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ → Σ-cong-⇔ λ _ →
(λ (t₂®v₂ , hyp , _) → hyp PE.refl , t₂®v₂)
, (λ (v⇒* , t₂®v₂) → t₂®v₂ , (λ _ → v⇒*) , ⊥-elim ∘→ (_$ PE.refl))) ⟩
(Δ ⊢ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ×
∃₃ λ t₁ t₂ v′ →
t ⇛ prod s 𝟘 t₁ t₂ ∷ Σ⟨ s ⟩ 𝟘 , q ▷ A ▹ B ×
v T.⇒* v′ ×
t₂ ® v′ ∷ B [ t₁ ]₀) □⇔
opaque
infix 19 _®_∷_◂_
_®_∷_◂_ : Term k → T.Term k → Term k → M → Set a
t ® v ∷ A ◂ p = p ≢ 𝟘 → t ® v ∷ A
opaque
infix 19 _®_∷[_]_◂_
_®_∷[_]_◂_ :
Subst k n → T.Subst k n → Mode → Con Term n → Conₘ n → Set a
_ ® _ ∷[ _ ] ε ◂ ε = Lift _ ⊤
σ ® σ′ ∷[ m ] Γ ∙ A ◂ γ ∙ p =
head σ ® T.head σ′ ∷ A [ tail σ ] ◂ ⌜ m ⌝ · p ×
tail σ ® T.tail σ′ ∷[ m ] Γ ◂ γ
opaque
infix 19 _▸_⊩ʳ_∷[_]_
_▸_⊩ʳ_∷[_]_ : Conₘ n → Con Term n → Term n → Mode → Term n → Set a
γ ▸ Γ ⊩ʳ t ∷[ m ] A =
∀ {σ σ′} →
Δ ⊩ˢ σ ∷ Γ →
σ ® σ′ ∷[ m ] Γ ◂ γ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ A [ σ ] ◂ ⌜ m ⌝
opaque
unfolding _®_∷_◂_
®∷◂⇔ : t ® v ∷ A ◂ p ⇔ (p ≢ 𝟘 → t ® v ∷ A)
®∷◂⇔ = id⇔
opaque
unfolding _®_∷[_]_◂_
®∷[]ε◂ε⇔ : σ ® σ′ ∷[ m ] ε ◂ ε ⇔ ⊤
®∷[]ε◂ε⇔ {σ} {σ′} {m} =
σ ® σ′ ∷[ m ] ε ◂ ε ⇔⟨ id⇔ ⟩
Lift _ ⊤ ⇔⟨ _ ⟩
⊤ □⇔
opaque
unfolding _®_∷[_]_◂_
®∷[]∙◂∙⇔ :
σ ® σ′ ∷[ m ] Γ ∙ A ◂ γ ∙ p ⇔
(head σ ® T.head σ′ ∷ A [ tail σ ] ◂ ⌜ m ⌝ · p ×
tail σ ® T.tail σ′ ∷[ m ] Γ ◂ γ)
®∷[]∙◂∙⇔ = id⇔
opaque
®∷[]◂⇔ :
σ ® σ′ ∷[ m ] Γ ◂ γ ⇔
(∀ {A x} → x ∷ A ∈ Γ →
σ x ® σ′ x ∷ A [ σ ] ◂ ⌜ m ⌝ · γ ⟨ x ⟩)
®∷[]◂⇔ {σ} {σ′} {m} {Γ = ε} {γ = ε} =
σ ® σ′ ∷[ m ] ε ◂ ε ⇔⟨ ®∷[]ε◂ε⇔ ⟩
⊤ ⇔⟨ (λ _ ()) , _ ⟩
(∀ {A x} →
x ∷ A ∈ ε →
σ x ® σ′ x ∷ A [ σ ] ◂ ⌜ m ⌝ · ε ⟨ x ⟩) □⇔
®∷[]◂⇔ {σ} {σ′} {m} {Γ = Γ ∙ A} {γ = γ ∙ p} =
σ ® σ′ ∷[ m ] Γ ∙ A ◂ γ ∙ p ⇔⟨ ®∷[]∙◂∙⇔ ⟩
head σ ® T.head σ′ ∷ A [ tail σ ] ◂ ⌜ m ⌝ · p ×
tail σ ® T.tail σ′ ∷[ m ] Γ ◂ γ ⇔⟨ id⇔ ×-cong-⇔ ®∷[]◂⇔ ⟩
head σ ® T.head σ′ ∷ A [ tail σ ] ◂ ⌜ m ⌝ · p ×
(∀ {B x} → x ∷ B ∈ Γ →
tail σ x ® T.tail σ′ x ∷ B [ tail σ ] ◂ ⌜ m ⌝ · γ ⟨ x ⟩) ⇔⟨ PE.subst (flip _⇔_ _)
(PE.cong₂ (_®_∷_◂_ _ _) (wk1-tail A) PE.refl) id⇔
×-cong-⇔
(implicit-Π-cong-⇔ λ B → implicit-Π-cong-⇔ λ _ →
Π-cong-⇔ λ _ →
PE.subst (flip _⇔_ _)
(PE.cong₂ (_®_∷_◂_ _ _) (wk1-tail B) PE.refl) id⇔) ⟩
head σ ® T.head σ′ ∷ wk1 A [ σ ] ◂ ⌜ m ⌝ · p ×
(∀ {B x} → x ∷ B ∈ Γ →
tail σ x ® T.tail σ′ x ∷ wk1 B [ σ ] ◂ ⌜ m ⌝ · γ ⟨ x ⟩) ⇔⟨ (λ (hyp₁ , hyp₂) → λ { here → hyp₁; (there x∈) → hyp₂ x∈ })
, (λ hyp → hyp here , hyp ∘→ there)
⟩
(∀ {B x} →
x ∷ B ∈ Γ ∙ A →
σ x ® σ′ x ∷ B [ σ ] ◂ ⌜ m ⌝ · (γ ∙ p) ⟨ x ⟩) □⇔
opaque
unfolding _▸_⊩ʳ_∷[_]_
▸⊩ʳ∷⇔ :
γ ▸ Γ ⊩ʳ t ∷[ m ] A ⇔
(∀ {σ σ′} → Δ ⊩ˢ σ ∷ Γ → σ ® σ′ ∷[ m ] Γ ◂ γ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ A [ σ ] ◂ ⌜ m ⌝)
▸⊩ʳ∷⇔ = id⇔
opaque
subsumption-®∷◂ :
(p PE.≡ 𝟘 → q PE.≡ 𝟘) →
t ® v ∷ A ◂ p →
t ® v ∷ A ◂ q
subsumption-®∷◂ {p} {q} {t} {v} {A} hyp =
t ® v ∷ A ◂ p ⇔⟨ ®∷◂⇔ ⟩→
(p ≢ 𝟘 → t ® v ∷ A) →⟨ _∘→ (_∘→ hyp) ⟩
(q ≢ 𝟘 → t ® v ∷ A) ⇔˘⟨ ®∷◂⇔ ⟩→
t ® v ∷ A ◂ q □
opaque
subsumption-®∷[]◂ :
(∀ x → γ ⟨ x ⟩ PE.≡ 𝟘 → δ ⟨ x ⟩ PE.≡ 𝟘) →
σ ® σ′ ∷[ m ] Γ ◂ γ →
σ ® σ′ ∷[ m ] Γ ◂ δ
subsumption-®∷[]◂ {γ = ε} {δ = ε} {σ} {σ′} {m} {Γ = ε} _ =
σ ® σ′ ∷[ m ] ε ◂ ε □
subsumption-®∷[]◂
{γ = γ ∙ p} {δ = δ ∙ q} {σ} {σ′} {m} {Γ = Γ ∙ A} hyp =
σ ® σ′ ∷[ m ] Γ ∙ A ◂ γ ∙ p ⇔⟨ ®∷[]∙◂∙⇔ ⟩→
head σ ® T.head σ′ ∷ A [ tail σ ] ◂ ⌜ m ⌝ · p ×
tail σ ® T.tail σ′ ∷[ m ] Γ ◂ γ →⟨ Σ.map
(subsumption-®∷◂ lemma)
(subsumption-®∷[]◂ (hyp ∘→ _+1)) ⟩
head σ ® T.head σ′ ∷ A [ tail σ ] ◂ ⌜ m ⌝ · q ×
tail σ ® T.tail σ′ ∷[ m ] Γ ◂ δ ⇔˘⟨ ®∷[]∙◂∙⇔ ⟩→
σ ® σ′ ∷[ m ] Γ ∙ A ◂ δ ∙ q □
where
lemma : ⌜ m ⌝ · p PE.≡ 𝟘 → ⌜ m ⌝ · q PE.≡ 𝟘
lemma = case PE.singleton m of λ where
(𝟘ᵐ , PE.refl) →
𝟘 · p PE.≡ 𝟘 →⟨ (λ _ → ·-zeroˡ _) ⟩
𝟘 · q PE.≡ 𝟘 □
(𝟙ᵐ , PE.refl) →
𝟙 · p PE.≡ 𝟘 ≡⟨ PE.cong (PE._≡ _) $ ·-identityˡ _ ⟩→
p PE.≡ 𝟘 →⟨ hyp x0 ⟩
q PE.≡ 𝟘 ≡⟨ PE.cong (PE._≡ _) $ PE.sym $ ·-identityˡ _ ⟩→
𝟙 · q PE.≡ 𝟘 □
opaque
subsumption-▸⊩ʳ∷[] :
(∀ x → δ ⟨ x ⟩ PE.≡ 𝟘 → γ ⟨ x ⟩ PE.≡ 𝟘) →
γ ▸ Γ ⊩ʳ t ∷[ m ] A →
δ ▸ Γ ⊩ʳ t ∷[ m ] A
subsumption-▸⊩ʳ∷[] {δ} {γ} {Γ} {t} {m} {A} hyp =
γ ▸ Γ ⊩ʳ t ∷[ m ] A ⇔⟨ ▸⊩ʳ∷⇔ ⟩→
(∀ {σ σ′} → Δ ⊩ˢ σ ∷ Γ → σ ® σ′ ∷[ m ] Γ ◂ γ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ A [ σ ] ◂ ⌜ m ⌝) →⟨ (_∘→ subsumption-®∷[]◂ hyp) ∘→_ ⟩
(∀ {σ σ′} → Δ ⊩ˢ σ ∷ Γ → σ ® σ′ ∷[ m ] Γ ◂ δ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ A [ σ ] ◂ ⌜ m ⌝) ⇔˘⟨ ▸⊩ʳ∷⇔ ⟩→
δ ▸ Γ ⊩ʳ t ∷[ m ] A □
opaque
subsumption-▸⊩ʳ∷[]-≤ :
⦃ 𝟘-well-behaved : Has-well-behaved-zero M semiring-with-meet ⦄ →
δ ≤ᶜ γ →
γ ▸ Γ ⊩ʳ t ∷[ m ] A →
δ ▸ Γ ⊩ʳ t ∷[ m ] A
subsumption-▸⊩ʳ∷[]-≤ δ≤γ =
subsumption-▸⊩ʳ∷[] (λ _ → ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 δ≤γ)
opaque
®∷→®∷◂ :
t ® v ∷ A →
t ® v ∷ A ◂ p
®∷→®∷◂ t®v = ®∷◂⇔ .proj₂ λ _ → t®v
opaque
®∷→®∷◂ω :
p ≢ 𝟘 →
t ® v ∷ A ◂ p →
t ® v ∷ A
®∷→®∷◂ω {p} {t} {v} {A} p≢𝟘 =
t ® v ∷ A ◂ p ⇔⟨ ®∷◂⇔ ⟩→
(p ≢ 𝟘 → t ® v ∷ A) →⟨ _$ p≢𝟘 ⟩
t ® v ∷ A □
opaque
®∷◂𝟘 : p PE.≡ 𝟘 → t ® v ∷ A ◂ p
®∷◂𝟘 p≡𝟘 = ®∷◂⇔ .proj₂ (⊥-elim ∘→ (_$ p≡𝟘))
opaque
▸⊩ʳ∷[𝟘ᵐ] : γ ▸ Γ ⊩ʳ t ∷[ 𝟘ᵐ[ ok ] ] A
▸⊩ʳ∷[𝟘ᵐ] = ▸⊩ʳ∷⇔ .proj₂ (λ _ _ → ®∷◂𝟘 PE.refl)
opaque
®∷[]◂𝟘ᶜ : σ ® σ′ ∷[ m ] Γ ◂ 𝟘ᶜ
®∷[]◂𝟘ᶜ {m} =
®∷[]◂⇔ .proj₂ λ {_} {x = x} x∈Γ →
®∷◂𝟘
(⌜ m ⌝ · 𝟘ᶜ ⟨ x ⟩ ≡⟨ PE.cong (_·_ _) $ 𝟘ᶜ-lookup x ⟩
⌜ m ⌝ · 𝟘 ≡⟨ ·-zeroʳ _ ⟩
𝟘 ∎)
where
open Tools.Reasoning.PropositionalEquality
opaque
▸⊩ʳ∷[]→®∷◂ :
𝟘ᶜ ▸ Δ ⊩ʳ t ∷[ m ] A →
t ® erase str t ∷ A ◂ ⌜ m ⌝
▸⊩ʳ∷[]→®∷◂ {t} {m} {A} =
𝟘ᶜ ▸ Δ ⊩ʳ t ∷[ m ] A ⇔⟨ ▸⊩ʳ∷⇔ ⟩→
(∀ {σ σ′} → Δ ⊩ˢ σ ∷ Δ → σ ® σ′ ∷[ m ] Δ ◂ 𝟘ᶜ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ A [ σ ] ◂ ⌜ m ⌝) →⟨ (λ hyp → hyp (⊩ˢ∷-idSubst (valid ⊢Δ)) (®∷[]◂𝟘ᶜ)) ⟩
t [ idSubst ] ® erase str t T.[ T.idSubst ] ∷ A [ idSubst ] ◂ ⌜ m ⌝ ≡⟨ PE.cong₃ (λ t v A → t ® v ∷ A ◂ _)
(subst-id _) (TP.subst-id _) (subst-id _) ⟩→
t ® erase str t ∷ A ◂ ⌜ m ⌝ □
opaque
▸⊩ʳ∷[𝟙ᵐ]→®∷ :
⦃ 𝟘-well-behaved : Has-well-behaved-zero M semiring-with-meet ⦄ →
𝟘ᶜ ▸ Δ ⊩ʳ t ∷[ 𝟙ᵐ ] A →
t ® erase str t ∷ A
▸⊩ʳ∷[𝟙ᵐ]→®∷ {t} {A} =
𝟘ᶜ ▸ Δ ⊩ʳ t ∷[ 𝟙ᵐ ] A →⟨ ▸⊩ʳ∷[]→®∷◂ ⟩
t ® erase str t ∷ A ◂ 𝟙 →⟨ ®∷→®∷◂ω non-trivial ⟩
t ® erase str t ∷ A □
opaque
unfolding _®_∷_
conv-®∷ :
Δ ⊩⟨ l ⟩ A ≡ B →
t ® v ∷ A →
t ® v ∷ B
conv-®∷ A≡B (_ , ⊩A , t®v) =
case wf-⊩≡ A≡B of λ
(_ , ⊩B) →
_ , ⊩B , convTermʳ ⊩A ⊩B (≅-eq (escape-⊩≡ A≡B)) t®v
opaque
conv-®∷◂ :
Δ ⊩⟨ l ⟩ A ≡ B →
t ® v ∷ A ◂ p →
t ® v ∷ B ◂ p
conv-®∷◂ {l} {A} {B} {t} {v} {p} A≡B =
t ® v ∷ A ◂ p ⇔⟨ ®∷◂⇔ ⟩→
(p ≢ 𝟘 → t ® v ∷ A) →⟨ conv-®∷ A≡B ∘→_ ⟩
(p ≢ 𝟘 → t ® v ∷ B) ⇔˘⟨ ®∷◂⇔ ⟩→
t ® v ∷ B ◂ p □
opaque
conv-▸⊩ʳ∷ :
Γ ⊩ᵛ⟨ l ⟩ A ≡ B →
γ ▸ Γ ⊩ʳ t ∷[ m ] A →
γ ▸ Γ ⊩ʳ t ∷[ m ] B
conv-▸⊩ʳ∷ {Γ} {l} {A} {B} {γ} {t} {m} A≡B =
γ ▸ Γ ⊩ʳ t ∷[ m ] A ⇔⟨ ▸⊩ʳ∷⇔ ⟩→
(∀ {σ σ′} → Δ ⊩ˢ σ ∷ Γ → σ ® σ′ ∷[ m ] Γ ◂ γ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ A [ σ ] ◂ ⌜ m ⌝) →⟨ (λ hyp ⊩σ σ®σ′ →
conv-®∷◂ (⊩ᵛ≡⇔′ʰ .proj₁ A≡B .proj₂ .proj₂ ⊩σ) $
hyp ⊩σ σ®σ′) ⟩
(∀ {σ σ′} → Δ ⊩ˢ σ ∷ Γ → σ ® σ′ ∷[ m ] Γ ◂ γ →
t [ σ ] ® erase str t T.[ σ′ ] ∷ B [ σ ] ◂ ⌜ m ⌝) ⇔˘⟨ ▸⊩ʳ∷⇔ ⟩→
γ ▸ Γ ⊩ʳ t ∷[ m ] B □
opaque
unfolding _®_∷_
®∷-⇒* :
v T.⇒* v′ →
t ® v ∷ A →
t ® v′ ∷ A
®∷-⇒* v⇒v′ (_ , ⊩A , t®v) =
_ , ⊩A , targetRedSubstTerm*′ ⊩A t®v v⇒v′
opaque
unfolding _®_∷_
®∷-⇐* :
t ⇛ t′ ∷ A →
v T.⇒* v′ →
t′ ® v′ ∷ A →
t ® v ∷ A
®∷-⇐* t⇒t′ v⇒v′ (_ , ⊩A , t′®v′) =
_ , ⊩A , redSubstTerm* ⊩A t′®v′ t⇒t′ v⇒v′
opaque
unfolding _®_∷_◂_
®∷◂-⇐* :
t ⇛ t′ ∷ A →
v T.⇒* v′ →
t′ ® v′ ∷ A ◂ p →
t ® v ∷ A ◂ p
®∷◂-⇐* {t} {t′} {A} {v} {v′} {p} t⇒t′ v⇒v′ =
t′ ® v′ ∷ A ◂ p ⇔⟨ ®∷◂⇔ ⟩→
(p ≢ 𝟘 → t′ ® v′ ∷ A) →⟨ ®∷-⇐* t⇒t′ v⇒v′ ∘→_ ⟩
(p ≢ 𝟘 → t ® v ∷ A) ⇔˘⟨ ®∷◂⇔ ⟩→
t ® v ∷ A ◂ p □