------------------------------------------------------------------------
-- Some examples related to the affine types modality with a "good" nr
-- function.
------------------------------------------------------------------------

open import Tools.Level

import Graded.Modality.Instances.Affine
open import Graded.Modality.Variant lzero
open import Graded.Usage.Restrictions

module Graded.Modality.Instances.Affine.Examples.Good.Nr
  -- The modality variant.
  (variant : Modality-variant)
  (open Graded.Modality.Instances.Affine variant)
  (UR : Usage-restrictions affineModality)
  where

open import Graded.Restrictions affineModality
open import Graded.Usage.Restrictions.Natrec affineModality
open import Graded.Modality Affine

private
  -- The "good" nr function is used
  UR′ = nr-available-UR zero-one-many-has-nr UR
  open Usage-restrictions UR′
  instance
    has-nr : Nr-available
    has-nr = Natrec-mode-has-nr.Nr  zero-one-many-has-nr 

open import Tools.Function
open import Tools.Nat using (Nat)
import Tools.Reasoning.PartialOrder
open import Tools.Product
open import Tools.Relation

open import Graded.Context affineModality
open import Graded.Context.Properties affineModality
open import Graded.Modality.Properties affineModality
open import Graded.Mode affineModality
open import Graded.Usage affineModality UR′
open import Graded.Usage.Inversion affineModality UR′
open import Graded.Usage.Properties affineModality UR′
open import Graded.Usage.Weakening affineModality UR′

open import Definition.Untyped Affine
open import Definition.Untyped.Nat affineModality

private variable
  n   : Nat
  γ δ : Conₘ _
  m   : Mode
  t u : Term _

private
  module M = Modality affineModality

private opaque

  -- A lemma used below

  ▸ℕ : 𝟘ᶜ {n = n}   𝟘ᵐ?  · 𝟘 ▸[ 𝟘ᵐ? ] 
  ▸ℕ = sub ℕₘ (≤ᶜ-reflexive (≈ᶜ-refl  M.·-zeroʳ _))

opaque

  -- The term double is not well-resourced.

  ¬▸double : ¬ ε ▸[ 𝟙ᵐ ] double
  ¬▸double ▸λ+ =
    case inv-usage-lam ▸λ+ of λ {
      (invUsageLam {δ = ε} ▸+ ε) 
    case inv-usage-natrec-has-nr ▸+ of λ {
      (_  p , _  q , _  r , _
             , ▸x0₁ , _ , ▸x0₂ , _ , _  𝟙≤nr) 
    case inv-usage-var ▸x0₁ of λ {
      (_  p≤𝟙) 
    case inv-usage-var ▸x0₂ of λ {
      (_  r≤𝟙) 
    case begin
      𝟙                  ≤⟨ 𝟙≤nr 
      𝟙 · r + ω · q + p  ≤⟨ +-monotone (·-monotoneʳ {r = 𝟙} r≤𝟙) (+-monotoneʳ p≤𝟙) 
      𝟙 + ω · q + 𝟙      ≡⟨ M.+-congˡ {x = 𝟙} (M.+-comm (ω · q) _) 
      𝟙 + 𝟙 + ω · q      ≡˘⟨ M.+-assoc 𝟙 𝟙 (ω · q) 
      ω                  
    of λ () }}}}
    where
    open Tools.Reasoning.PartialOrder ≤-poset

opaque

  -- A usage rule for plus′.

  ▸plus′ : γ ▸[ m ] t  δ ▸[ m ] u  γ +ᶜ δ ▸[ m ] plus′ t u
  ▸plus′ ▸t ▸u =
    sub (natrecₘ {δ = 𝟘ᶜ} ▸t
          (sub-≈ᶜ (sucₘ var) (≈ᶜ-refl  M.·-zeroʳ _  M.·-identityʳ _))
          ▸u ▸ℕ)
        (lemma _ _)
    where
    open Tools.Reasoning.PartialOrder ≤-poset
    lemma′ :  p q  p + q  Has-nr.nr zero-one-many-has-nr 𝟘 𝟙 p 𝟘 q
    lemma′ p q = begin
      p + q                                    ≈⟨ M.+-comm p q 
      q + p                                    ≈˘⟨ M.+-congˡ (M.+-identityˡ p) 
      q + 𝟘 + p                                ≈˘⟨ M.+-congʳ (M.·-identityˡ q) 
      𝟙 · q + ω · 𝟘 + p                        ≡⟨⟩
      Has-nr.nr zero-one-many-has-nr 𝟘 𝟙 p 𝟘 q 
    lemma : (γ δ : Conₘ n)  γ +ᶜ δ ≤ᶜ nrᶜ  has-nr = zero-one-many-has-nr  𝟘 𝟙 γ 𝟘ᶜ δ
    lemma ε ε = ε
    lemma (γ  p) (δ  q) = lemma γ δ  lemma′ p q

opaque

  -- The term plus is well-resourced.

  ▸plus : ε ▸[ 𝟙ᵐ ] plus
  ▸plus =
    lamₘ $
    lamₘ $
    ▸plus′ var var

opaque
  unfolding f′

  -- A usage rule for f′.

  ▸f′ : γ ▸[ m ] t  δ ▸[ m ] u  γ +ᶜ δ ▸[ m ] f′ t u
  ▸f′ {γ} ▸t ▸u =
    sub (natrecₘ {δ = γ +ᶜ 𝟘ᶜ} ▸t
          (▸plus′ (wkUsage (step (step id)) ▸t)
            (sub-≈ᶜ var (≈ᶜ-refl  M.·-identityʳ _  M.·-zeroʳ _)))
          ▸u ▸ℕ)
        (lemma _ _)
    where
    open Tools.Reasoning.PartialOrder ≤-poset
    lemma′ :  p q  p + q  Has-nr.nr zero-one-many-has-nr 𝟙 𝟘 p (p + 𝟘) q
    lemma′ p q = begin
      p + q                                          ≡⟨ M.+-comm p q 
      q + p                                          ≡˘⟨ M.∧-idem _ 
      (q + p)  (q + p)                              ≡˘⟨ M.∧-congʳ (M.+-cong (M.·-identityˡ q) (M.+-identityʳ p)) 
      (𝟙 · q + p + 𝟘)  (q + p)                      ≡⟨⟩
      Has-nr.nr zero-one-many-has-nr 𝟙 𝟘 p (p + 𝟘) q 
    lemma : (γ δ : Conₘ n)  γ +ᶜ δ ≤ᶜ nrᶜ  has-nr = zero-one-many-has-nr  𝟙 𝟘 γ (γ +ᶜ 𝟘ᶜ) δ
    lemma ε ε = ε
    lemma (γ  p) (δ  q) = lemma γ δ  lemma′ p q

opaque
  unfolding f

  -- The term f is well-resourced.

  ▸f : ε ▸[ 𝟙ᵐ ] f
  ▸f = lamₘ $ lamₘ $ ▸f′ var var

opaque

  -- A usage rule for pred′.

  ▸pred′ : γ ▸[ m ] t  γ ▸[ m ] pred′ t
  ▸pred′ ▸t =
    sub (natrecₘ {δ = 𝟘ᶜ} zeroₘ
      (sub-≈ᶜ var (≈ᶜ-refl  M.·-identityʳ _  M.·-zeroʳ _))
      ▸t ▸ℕ)
      (lemma _)
    where
    open Tools.Reasoning.PartialOrder ≤-poset
    lemma′ :  p  p  Has-nr.nr zero-one-many-has-nr 𝟙 𝟘 𝟘 𝟘 p
    lemma′ p = begin
      p                                        ≈˘⟨ M.+-identityʳ _ 
      p + 𝟘                                    ≈˘⟨ M.∧-idem _ 
      (p + 𝟘)  (p + 𝟘)                        ≈˘⟨ M.∧-congʳ (M.+-congʳ (M.·-identityˡ p)) 
      (𝟙 · p + 𝟘)  (p + 𝟘)                    ≡⟨⟩
      Has-nr.nr zero-one-many-has-nr 𝟙 𝟘 𝟘 𝟘 p 
    lemma : (γ : Conₘ n)  γ ≤ᶜ nrᶜ  has-nr = zero-one-many-has-nr  𝟙 𝟘 𝟘ᶜ 𝟘ᶜ γ
    lemma ε = ε
    lemma (γ  p) = lemma γ  lemma′ p

opaque

  -- The term pred is well-resourced.

  ▸pred : ε ▸[ 𝟙ᵐ ] pred
  ▸pred = lamₘ $ ▸pred′ (sub-≈ᶜ var (ε  M.·-identityʳ _))