open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Conversion.Weakening
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
(open Type-restrictions R)
⦃ no-equality-reflection : No-equality-reflection ⦄
where
open import Definition.Untyped M as U hiding (wk)
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Definition.Typed R
open import Definition.Typed.Inversion R
open import Definition.Typed.Properties R
open import Definition.Typed.Syntactic R
open import Definition.Typed.Weakening R
open import Definition.Conversion R
open import Definition.Conversion.Soundness R
open import Tools.Fin
open import Tools.Function
open import Tools.Nat
import Tools.PropositionalEquality as PE
open import Tools.Product
private
variable
m n : Nat
ρ : Wk m n
p r : M
mutual
wk~↑ : ∀ {t u A Γ Δ} ([ρ] : ρ ∷ʷ Δ ⊇ Γ)
→ Γ ⊢ t ~ u ↑ A
→ Δ ⊢ U.wk ρ t ~ U.wk ρ u ↑ U.wk ρ A
wk~↑ {ρ} [ρ] (var-refl x₁ x≡y) =
var-refl (wkTerm [ρ] x₁) (PE.cong (wkVar ρ) x≡y)
wk~↑ ρ (app-cong {B} t~u x) =
PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym (wk-β B))
(app-cong (wk~↓ ρ t~u) (wkConv↑Term ρ x))
wk~↑ ρ (fst-cong p~r) =
fst-cong (wk~↓ ρ p~r)
wk~↑ ρ (snd-cong {B} p~r) =
PE.subst (λ x → _ ⊢ _ ~ _ ↑ x)
(PE.sym (wk-β B))
(snd-cong (wk~↓ ρ p~r))
wk~↑ [ρ] (natrec-cong {A₁} x x₁ x₂ t~u) =
let ⊢Δ = wf-∷ʷ⊇ [ρ]
Δℕ⊢F =
wk (liftʷʷ [ρ] (ℕⱼ ⊢Δ))
(proj₁ (syntacticEq (soundnessConv↑ x)))
in
PE.subst (_⊢_~_↑_ _ _ _) (PE.sym (wk-β A₁)) $
natrec-cong (wkConv↑ (liftʷ (∷ʷ⊇→∷⊇ [ρ]) (ℕⱼ ⊢Δ)) x)
(PE.subst (_⊢_[conv↑]_∷_ _ _ _) (wk-β A₁) $
wkConv↑Term [ρ] x₁)
(PE.subst (_⊢_[conv↑]_∷_ _ _ _) (wk-β-natrec _ A₁) $
wkConv↑Term (liftʷ (lift (∷ʷ⊇→∷⊇ [ρ])) Δℕ⊢F) x₂)
(wk~↓ [ρ] t~u)
wk~↑
{ρ} {Δ} [ρ]
(prodrec-cong {C = C} {E} {g} {h} {u} {v} x g~h x₁) =
let ρg~ρh = wk~↓ [ρ] g~h
⊢ρΣ , _ , _ = syntacticEqTerm (soundness~↓ ρg~ρh)
_ , ⊢ρG , _ = inversion-ΠΣ ⊢ρΣ
u↓v = PE.subst (λ x → _ ⊢ U.wk (liftn ρ 2) u [conv↑] U.wk (liftn ρ 2) v ∷ x)
(wk-β-prodrec ρ C)
(wkConv↑Term (liftʷ (lift (∷ʷ⊇→∷⊇ [ρ])) ⊢ρG) x₁)
in PE.subst (λ x → _ ⊢ U.wk ρ (prodrec _ _ _ C g u) ~
U.wk ρ (prodrec _ _ _ E h v) ↑ x)
(PE.sym (wk-β C))
(prodrec-cong (wkConv↑ (liftʷʷ [ρ] ⊢ρΣ) x) ρg~ρh
u↓v)
wk~↑ [ρ] (emptyrec-cong x t~u) =
emptyrec-cong (wkConv↑ [ρ] x) (wk~↓ [ρ] t~u)
wk~↑ [ρ] (unitrec-cong {A₁} x x₁ x₂ no-η) =
let k~l = wk~↓ [ρ] x₁
⊢Unit , _ = syntacticEqTerm (soundness~↓ k~l)
u↑v = PE.subst (_⊢_[conv↑]_∷_ _ _ _)
(wk-β A₁)
(wkConv↑Term [ρ] x₂)
in PE.subst (_⊢_~_↑_ _ _ _)
(PE.sym (wk-β A₁))
(unitrec-cong (wkConv↑ (liftʷʷ [ρ] ⊢Unit) x) k~l u↑v
no-η)
wk~↑
{ρ} {Δ} [ρ]
(J-cong {A₁} {B₁} {B₂} A₁≡A₂ t₁≡t₂ B₁≡B₂ u₁≡u₂ v₁≡v₂ w₁~w₂ ≡Id) =
case syntacticEq (soundnessConv↑ A₁≡A₂) .proj₁ of λ {
⊢A₁ →
case syntacticEqTerm (soundnessConv↑Term t₁≡t₂) .proj₂ .proj₁ of λ {
⊢t₁ →
case wk [ρ] ⊢A₁ of λ {
⊢wk-ρ-A₁ →
PE.subst (_ ⊢ J _ _ _ _ _ _ _ _ ~ _ ↑_)
(PE.sym $ wk-β-doubleSubst _ B₁ _ _) $
J-cong (wkConv↑ [ρ] A₁≡A₂) (wkConv↑Term [ρ] t₁≡t₂)
(PE.subst
(λ Id →
Δ ∙ U.wk ρ A₁ ∙ Id ⊢
U.wk (lift (lift ρ)) B₁ [conv↑] U.wk (lift (lift ρ)) B₂)
(PE.cong₂ (λ A t → Id A t (var x0))
(PE.sym $ wk1-wk≡lift-wk1 _ _)
(PE.sym $ wk1-wk≡lift-wk1 _ _)) $
wkConv↑
(liftʷ (lift (∷ʷ⊇→∷⊇ [ρ])) $
Idⱼ′
(PE.subst₂ (_⊢_∷_ _)
(PE.sym $ lift-wk1 _ _)
(PE.sym $ lift-wk1 _ _) $
wkTerm (stepʷʷ [ρ] ⊢wk-ρ-A₁) ⊢t₁)
(PE.subst (_⊢_∷_ _ _) (wk1-wk≡lift-wk1 _ _) $
var (∙ ⊢wk-ρ-A₁) here))
B₁≡B₂)
(PE.subst (_⊢_[conv↑]_∷_ _ _ _) (wk-β-doubleSubst _ B₁ _ _) $
wkConv↑Term [ρ] u₁≡u₂)
(wkConv↑Term [ρ] v₁≡v₂) (wk~↓ [ρ] w₁~w₂)
(wkEq [ρ] ≡Id) }}}
wk~↑ [ρ] (K-cong {B₁} A₁≡A₂ t₁≡t₂ B₁≡B₂ u₁≡u₂ v₁~v₂ ≡Id ok) =
case syntacticEqTerm (soundnessConv↑Term t₁≡t₂) .proj₂ .proj₁ of λ {
⊢t₁ →
PE.subst (_ ⊢ K _ _ _ _ _ _ ~ _ ↑_)
(PE.sym $ wk-β B₁) $
K-cong (wkConv↑ [ρ] A₁≡A₂) (wkConv↑Term [ρ] t₁≡t₂)
(wkConv↑ (liftʷʷ [ρ] (wk [ρ] (Idⱼ′ ⊢t₁ ⊢t₁))) B₁≡B₂)
(PE.subst (_⊢_[conv↑]_∷_ _ _ _) (wk-β B₁) $
wkConv↑Term [ρ] u₁≡u₂)
(wk~↓ [ρ] v₁~v₂) (wkEq [ρ] ≡Id) ok }
wk~↑ [ρ] ([]-cong-cong A₁≡A₂ t₁≡t₂ u₁≡u₂ v₁~v₂ ≡Id ok) =
[]-cong-cong (wkConv↑ [ρ] A₁≡A₂) (wkConv↑Term [ρ] t₁≡t₂)
(wkConv↑Term [ρ] u₁≡u₂) (wk~↓ [ρ] v₁~v₂) (wkEq [ρ] ≡Id)
ok
wk~↓ : ∀ {t u A Γ Δ} ([ρ] : ρ ∷ʷ Δ ⊇ Γ)
→ Γ ⊢ t ~ u ↓ A
→ Δ ⊢ U.wk ρ t ~ U.wk ρ u ↓ U.wk ρ A
wk~↓ {ρ} [ρ] ([~] A₁ D k~l) =
[~] (U.wk ρ A₁) (wkRed↘ [ρ] D) (wk~↑ [ρ] k~l)
wkConv↑ : ∀ {A B Γ Δ} ([ρ] : ρ ∷ʷ Δ ⊇ Γ)
→ Γ ⊢ A [conv↑] B
→ Δ ⊢ U.wk ρ A [conv↑] U.wk ρ B
wkConv↑ {ρ} [ρ] ([↑] A′ B′ D D′ A′<>B′) =
[↑] (U.wk ρ A′) (U.wk ρ B′) (wkRed↘ [ρ] D) (wkRed↘ [ρ] D′)
(wkConv↓ [ρ] A′<>B′)
wkConv↓ : ∀ {A B Γ Δ} ([ρ] : ρ ∷ʷ Δ ⊇ Γ)
→ Γ ⊢ A [conv↓] B
→ Δ ⊢ U.wk ρ A [conv↓] U.wk ρ B
wkConv↓ ρ (U-refl x) = U-refl (wf-∷ʷ⊇ ρ)
wkConv↓ ρ (ℕ-refl x) = ℕ-refl (wf-∷ʷ⊇ ρ)
wkConv↓ ρ (Empty-refl x) = Empty-refl (wf-∷ʷ⊇ ρ)
wkConv↓ ρ (Unit-refl x ok) = Unit-refl (wf-∷ʷ⊇ ρ) ok
wkConv↓ ρ (ne x) = ne (wk~↓ ρ x)
wkConv↓ ρ (ΠΣ-cong A<>B A<>B₁ ok) =
let ⊢ρF = wk ρ (syntacticEq (soundnessConv↑ A<>B) .proj₁) in
ΠΣ-cong (wkConv↑ ρ A<>B) (wkConv↑ (liftʷʷ ρ ⊢ρF) A<>B₁) ok
wkConv↓ ρ (Id-cong A₁≡A₂ t₁≡t₂ u₁≡u₂) =
Id-cong (wkConv↑ ρ A₁≡A₂) (wkConv↑Term ρ t₁≡t₂)
(wkConv↑Term ρ u₁≡u₂)
wkConv↑Term : ∀ {t u A Γ Δ} ([ρ] : ρ ∷ʷ Δ ⊇ Γ)
→ Γ ⊢ t [conv↑] u ∷ A
→ Δ ⊢ U.wk ρ t [conv↑] U.wk ρ u ∷ U.wk ρ A
wkConv↑Term {ρ} [ρ] ([↑]ₜ B t′ u′ D d d′ t<>u) =
[↑]ₜ (U.wk ρ B) (U.wk ρ t′) (U.wk ρ u′)
(wkRed↘ [ρ] D) (wkRed↘Term [ρ] d) (wkRed↘Term [ρ] d′)
(wkConv↓Term [ρ] t<>u)
wkConv↓Term : ∀ {t u A Γ Δ} ([ρ] : ρ ∷ʷ Δ ⊇ Γ)
→ Γ ⊢ t [conv↓] u ∷ A
→ Δ ⊢ U.wk ρ t [conv↓] U.wk ρ u ∷ U.wk ρ A
wkConv↓Term ρ (ℕ-ins x) =
ℕ-ins (wk~↓ ρ x)
wkConv↓Term ρ (Empty-ins x) =
Empty-ins (wk~↓ ρ x)
wkConv↓Term ρ (Unitʷ-ins ok t~u) =
Unitʷ-ins ok (wk~↓ ρ t~u)
wkConv↓Term ρ (Σʷ-ins t u x) =
Σʷ-ins (wkTerm ρ t) (wkTerm ρ u) (wk~↓ ρ x)
wkConv↓Term {ρ} [ρ] (ne-ins t u x x₁) =
ne-ins (wkTerm [ρ] t) (wkTerm [ρ] u) (wkNeutral ρ x) (wk~↓ [ρ] x₁)
wkConv↓Term ρ (univ x x₁ x₂) =
univ (wkTerm ρ x) (wkTerm ρ x₁) (wkConv↓ ρ x₂)
wkConv↓Term ρ (zero-refl x) = zero-refl (wf-∷ʷ⊇ ρ)
wkConv↓Term ρ (starʷ-refl _ ok no-η) = starʷ-refl (wf-∷ʷ⊇ ρ) ok no-η
wkConv↓Term ρ (suc-cong t<>u) = suc-cong (wkConv↑Term ρ t<>u)
wkConv↓Term ρ (prod-cong {G = G} x₁ x₂ x₃ ok) =
let ⊢ρF = wk ρ (⊢∙→⊢ (wf x₁))
⊢ρG = wk (liftʷʷ ρ ⊢ρF) x₁
in prod-cong ⊢ρG (wkConv↑Term ρ x₂)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wk-β G)
(wkConv↑Term ρ x₃))
ok
wkConv↓Term {ρ} {Δ} [ρ] (η-eq {F = F} {G = G} x₁ x₂ y y₁ t<>u) =
let ⊢F , _ = inversion-ΠΣ (syntacticTerm x₁)
⊢ρF = wk [ρ] ⊢F
in
η-eq (wkTerm [ρ] x₁) (wkTerm [ρ] x₂)
(wkFunction ρ y) (wkFunction ρ y₁) $
PE.subst₃ (λ x y z → Δ ∙ U.wk ρ F ⊢ x [conv↑] y ∷ z)
(PE.cong₃ _∘⟨_⟩_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl PE.refl)
(PE.cong₃ _∘⟨_⟩_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl PE.refl)
PE.refl $
wkConv↑Term (liftʷʷ [ρ] ⊢ρF) t<>u
wkConv↓Term {ρ} [ρ] (Σ-η {B} ⊢p ⊢r pProd rProd fstConv sndConv) =
Σ-η (wkTerm [ρ] ⊢p)
(wkTerm [ρ] ⊢r)
(wkProduct ρ pProd)
(wkProduct ρ rProd)
(wkConv↑Term [ρ] fstConv)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x)
(wk-β B)
(wkConv↑Term [ρ] sndConv))
wkConv↓Term {ρ} [ρ] (η-unit [t] [u] tWhnf uWhnf ok) =
η-unit (wkTerm [ρ] [t]) (wkTerm [ρ] [u])
(wkWhnf ρ tWhnf) (wkWhnf ρ uWhnf) ok
wkConv↓Term ρ (Id-ins ⊢v₁ v₁~v₂) =
Id-ins (wkTerm ρ ⊢v₁) (wk~↓ ρ v₁~v₂)
wkConv↓Term ρ (rfl-refl t≡u) =
rfl-refl (wkEqTerm ρ t≡u)