open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typechecking.Soundness
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
where
open Type-restrictions R
open import Definition.Typechecking R
open import Definition.Typed R
open import Definition.Typed.Inversion R
open import Definition.Typed.Properties R
open import Definition.Typed.Substitution R
open import Definition.Typed.Syntactic R
import Definition.Typed.Weakening R as W
open import Definition.Untyped M
open import Definition.Untyped.Properties M
open import Tools.Function
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
private
variable
n : Nat
Γ : Con Term n
t A : Term n
soundness⇉-var : ∀ {x} → ⊢ Γ → x ∷ A ∈ Γ → (Γ ⊢ A) × (Γ ⊢ var x ∷ A)
soundness⇉-var ε ()
soundness⇉-var (∙ ⊢A) here =
W.wk₁ ⊢A ⊢A , var₀ ⊢A
soundness⇉-var (∙ ⊢B) (there x) =
let ⊢A , ⊢x = soundness⇉-var (wf ⊢B) x
in W.wk₁ ⊢B ⊢A , var (∙ ⊢B) (there x)
mutual
soundness⇇Type : ⊢ Γ → Γ ⊢ A ⇇Type → Γ ⊢ A
soundness⇇Type ⊢Γ Uᶜ = Uⱼ ⊢Γ
soundness⇇Type ⊢Γ ℕᶜ = ℕⱼ ⊢Γ
soundness⇇Type ⊢Γ (Unitᶜ ok) = Unitⱼ ⊢Γ ok
soundness⇇Type ⊢Γ Emptyᶜ = Emptyⱼ ⊢Γ
soundness⇇Type ⊢Γ (ΠΣᶜ ⊢A ⊢B ok) =
ΠΣⱼ (soundness⇇Type (∙ soundness⇇Type ⊢Γ ⊢A) ⊢B) ok
soundness⇇Type _ (Idᶜ _ ⊢t ⊢u) =
Idⱼ′ (soundness⇇ ⊢t) (soundness⇇ ⊢u)
soundness⇇Type ⊢Γ (univᶜ ⊢A (A⇒*U , _)) =
univ (conv (soundness⇉ ⊢Γ ⊢A .proj₂) (subset* A⇒*U))
soundness⇉ : ⊢ Γ → Γ ⊢ t ⇉ A → (Γ ⊢ A) × (Γ ⊢ t ∷ A)
soundness⇉ ⊢Γ Uᵢ = Uⱼ ⊢Γ , Uⱼ ⊢Γ
soundness⇉ ⊢Γ (ΠΣᵢ ⊢A (⇒*U₁ , _) ⊢B (⇒*U₂ , _) ok) =
let _ , ⊢A = soundness⇉ ⊢Γ ⊢A
⊢A = conv ⊢A (subset* ⇒*U₁)
_ , ⊢B = soundness⇉ (∙ univ ⊢A) ⊢B
⊢B = conv ⊢B (subset* ⇒*U₂)
in
Uⱼ ⊢Γ , ΠΣⱼ ⊢A ⊢B ok
soundness⇉ ⊢Γ (varᵢ x∷A∈Γ) = soundness⇉-var ⊢Γ x∷A∈Γ
soundness⇉ ⊢Γ (appᵢ t⇉A (A⇒ΠFG , _) u⇇F) =
let ⊢A , ⊢t = soundness⇉ ⊢Γ t⇉A
A≡ΠFG = subset* A⇒ΠFG
_ , ⊢ΠFG = syntacticEq A≡ΠFG
⊢F , ⊢G , _ = inversion-ΠΣ ⊢ΠFG
⊢u = soundness⇇ u⇇F
⊢t′ = conv ⊢t A≡ΠFG
in substType ⊢G ⊢u , ⊢t′ ∘ⱼ ⊢u
soundness⇉ ⊢Γ (fstᵢ t⇉A (A⇒ΣFG , _)) =
let ⊢A , ⊢t = soundness⇉ ⊢Γ t⇉A
A≡ΣFG = subset* A⇒ΣFG
_ , ⊢ΣFG = syntacticEq A≡ΣFG
⊢F , ⊢G , _ = inversion-ΠΣ ⊢ΣFG
in ⊢F , fstⱼ ⊢G (conv ⊢t A≡ΣFG)
soundness⇉ ⊢Γ (sndᵢ t⇉A (A⇒ΣFG , _)) =
let ⊢A , ⊢t = soundness⇉ ⊢Γ t⇉A
A≡ΣFG = subset* A⇒ΣFG
_ , ⊢ΣFG = syntacticEq A≡ΣFG
⊢F , ⊢G , _ = inversion-ΠΣ ⊢ΣFG
in substType ⊢G (fstⱼ ⊢G (conv ⊢t A≡ΣFG)) , sndⱼ ⊢G (conv ⊢t A≡ΣFG)
soundness⇉ ⊢Γ (prodrecᵢ A⇇Type t⇉B (B⇒ΣFG , _) u⇇A₊) =
let ⊢B , ⊢t = soundness⇉ ⊢Γ t⇉B
B≡ΣFG = subset* B⇒ΣFG
⊢t′ = conv ⊢t B≡ΣFG
_ , ⊢ΣFG = syntacticEq B≡ΣFG
_ , _ , ok = inversion-ΠΣ ⊢ΣFG
⊢A = soundness⇇Type (∙ ⊢ΣFG) A⇇Type
⊢u = soundness⇇ u⇇A₊
in substType ⊢A ⊢t′ , prodrecⱼ ⊢A ⊢t′ ⊢u ok
soundness⇉ ⊢Γ ℕᵢ = Uⱼ ⊢Γ , ℕⱼ ⊢Γ
soundness⇉ ⊢Γ zeroᵢ = (ℕⱼ ⊢Γ) , (zeroⱼ ⊢Γ)
soundness⇉ ⊢Γ (sucᵢ t⇇ℕ) = ℕⱼ ⊢Γ , sucⱼ (soundness⇇ t⇇ℕ)
soundness⇉ ⊢Γ (natrecᵢ A⇇Type z⇇A₀ s⇇A₊ n⇇ℕ) =
let ⊢ℕ = ℕⱼ ⊢Γ
⊢A = soundness⇇Type (∙ ⊢ℕ) A⇇Type
⊢z = soundness⇇ z⇇A₀
⊢s = soundness⇇ s⇇A₊
⊢n = soundness⇇ n⇇ℕ
in substType ⊢A ⊢n , natrecⱼ ⊢z ⊢s ⊢n
soundness⇉ ⊢Γ (Unitᵢ ok) = Uⱼ ⊢Γ , Unitⱼ ⊢Γ ok
soundness⇉ ⊢Γ (starᵢ ok) = Unitⱼ ⊢Γ ok , starⱼ ⊢Γ ok
soundness⇉ _ (unitrecᵢ A⇇Type t⇇Unit u⇇A₊) =
let ⊢t = soundness⇇ t⇇Unit
⊢Unit = syntacticTerm ⊢t
ok = inversion-Unit ⊢Unit
⊢A = soundness⇇Type (∙ ⊢Unit) A⇇Type
⊢u = soundness⇇ u⇇A₊
in substType ⊢A ⊢t , unitrecⱼ ⊢A ⊢t ⊢u ok
soundness⇉ ⊢Γ Emptyᵢ = (Uⱼ ⊢Γ) , (Emptyⱼ ⊢Γ)
soundness⇉ ⊢Γ (emptyrecᵢ A⇇Type t⇇Empty) =
let ⊢A = soundness⇇Type ⊢Γ A⇇Type
in ⊢A , (emptyrecⱼ ⊢A (soundness⇇ t⇇Empty))
soundness⇉ ⊢Γ (Idᵢ ⊢A (⇒*U , _) ⊢t ⊢u) =
let _ , ⊢A = soundness⇉ ⊢Γ ⊢A
⊢A = conv ⊢A (subset* ⇒*U)
in
Uⱼ ⊢Γ , Idⱼ ⊢A (soundness⇇ ⊢t) (soundness⇇ ⊢u)
soundness⇉ ⊢Γ (Jᵢ ⊢A ⊢t ⊢B ⊢u ⊢v ⊢w) =
case soundness⇇Type ⊢Γ ⊢A of λ {
⊢A →
case soundness⇇ ⊢t of λ {
⊢t →
case soundness⇇Type (∙ Idⱼ′ (W.wkTerm₁ ⊢A ⊢t) (var₀ ⊢A)) ⊢B of λ {
⊢B →
case soundness⇇ ⊢w of λ {
⊢w →
substType₂ ⊢B (soundness⇇ ⊢v)
(PE.subst (_⊢_∷_ _ _) ≡Id-wk1-wk1-0[]₀ ⊢w)
, Jⱼ′ ⊢B (soundness⇇ ⊢u) ⊢w }}}}
soundness⇉ ⊢Γ (Kᵢ ⊢A ⊢t ⊢B ⊢u ⊢v ok) =
case soundness⇇Type ⊢Γ ⊢A of λ {
⊢A →
case soundness⇇ ⊢t of λ {
⊢t →
case soundness⇇Type (∙ Idⱼ′ ⊢t ⊢t) ⊢B of λ {
⊢B →
case soundness⇇ ⊢v of λ {
⊢v →
substType ⊢B ⊢v
, Kⱼ ⊢B (soundness⇇ ⊢u) ⊢v ok }}}}
soundness⇉ _ ([]-congᵢ _ ⊢t ⊢u ⊢v ok) =
Idⱼ′ ([]ⱼ ([]-cong→Erased ok) (soundness⇇ ⊢t))
([]ⱼ ([]-cong→Erased ok) (soundness⇇ ⊢u))
, []-congⱼ′ ok (soundness⇇ ⊢v)
soundness⇇ : Γ ⊢ t ⇇ A → Γ ⊢ t ∷ A
soundness⇇ (lamᶜ A↘ΠFG t⇇G)=
let A≡ΠFG = subset* (proj₁ A↘ΠFG)
_ , ⊢ΠFG = syntacticEq A≡ΠFG
_ , ⊢G , ok = inversion-ΠΣ ⊢ΠFG
⊢t = soundness⇇ t⇇G
in conv (lamⱼ′ ok ⊢t) (sym A≡ΠFG)
soundness⇇ (prodᶜ A↘ΣFG t⇇F u⇇Gt) =
let A≡ΣFG = subset* (proj₁ A↘ΣFG)
_ , ⊢ΣFG = syntacticEq A≡ΣFG
_ , ⊢G , ok = inversion-ΠΣ ⊢ΣFG
⊢t = soundness⇇ t⇇F
⊢u = soundness⇇ u⇇Gt
in conv (prodⱼ ⊢G ⊢t ⊢u ok) (sym A≡ΣFG)
soundness⇇ (rflᶜ (A⇒*Id , _) t≡u) =
conv (rflⱼ′ t≡u) (sym (subset* A⇒*Id))
soundness⇇ (infᶜ t⇉B A≡B) =
conv (soundness⇉ (wfEq A≡B) t⇉B .proj₂) A≡B