open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Irrelevance
{a} {M : Set a}
{𝕄 : Modality M}
{R : Type-restrictions 𝕄}
(as : Assumptions R)
where
open Assumptions as
open Modality 𝕄
open Type-restrictions R
open import Graded.Erasure.LogicalRelation as
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.ShapeView R
open import Definition.LogicalRelation.Weakening.Restricted R
import Definition.LogicalRelation.Irrelevance R as I
open import Definition.Typed.Consequences.Injectivity R
open import Definition.Typed.Properties R
open import Definition.Typed.Reasoning.Type R
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Tools.Function
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Relation
private
variable
n : Nat
A′ : Term n
irrelevanceTermSV : ∀ {l l′ t v A}
→ ([A] : Δ ⊩⟨ l ⟩ A)
([A]′ : Δ ⊩⟨ l′ ⟩ A)
→ t ®⟨ l ⟩ v ∷ A / [A]
→ ShapeView Δ l l′ A A [A] [A]′
→ t ®⟨ l′ ⟩ v ∷ A / [A]′
irrelevanceTermSV .(Uᵣ UA) .(Uᵣ UB) t®v (Uᵥ UA UB) = t®v
irrelevanceTermSV .(ℕᵣ ℕA) .(ℕᵣ ℕB) t®v (ℕᵥ ℕA ℕB) = t®v
irrelevanceTermSV
{A}
_ _ t®v (Unitᵥ {s} (Unitᵣ l _ A⇒*Unit₁ _) (Unitᵣ l′ _ A⇒*Unit₂ _)) =
case Unit-injectivity
(Unit s l ≡˘⟨ subset* A⇒*Unit₁ ⟩⊢
A ≡⟨ subset* A⇒*Unit₂ ⟩⊢∎
Unit s l′ ∎) of λ {
(_ , PE.refl) →
t®v }
irrelevanceTermSV
[A] [A]′ t®v
(Bᵥ (BΠ p q) (Bᵣ F G D A≡A [F] [G] G-ext _)
(Bᵣ F₁ G₁ D₁ A≡A₁ [F]₁ [G]₁ G-ext₁ _))
with B-PE-injectivity BΠ! BΠ! (whrDet* (D , ΠΣₙ) (D₁ , ΠΣₙ))
... | PE.refl , PE.refl , _
with is-𝟘? p
... | (yes p≡𝟘) = t®v .proj₁ , λ [a]′ →
let [a] = I.irrelevanceTerm ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) [a]′
t®v′ = t®v .proj₂ [a]
SV′ = goodCasesRefl ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′)
in irrelevanceTermSV ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′) t®v′ SV′
... | (no p≢𝟘) = t®v .proj₁ , λ [a]′ a®w′ →
let [a] = I.irrelevanceTerm ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) [a]′
SV = goodCasesRefl ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ))
a®w = irrelevanceTermSV ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) a®w′ SV
t®v′ = t®v .proj₂ [a] a®w
SV′ = goodCasesRefl ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′)
in irrelevanceTermSV ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′) t®v′ SV′
irrelevanceTermSV {v = v}
[A] [A]′ (t₁ , t₂ , t⇒t′ , [t₁] , v₂ , t₂®v₂ , extra)
(Bᵥ (BΣ _ p _) (Bᵣ F G D A≡A [F] [G] G-ext _)
(Bᵣ F₁ G₁ D₁ A≡A₁ [F]₁ [G]₁ G-ext₁ _))
with B-PE-injectivity BΣ! BΣ! (whrDet* (D , ΠΣₙ) (D₁ , ΠΣₙ))
... | PE.refl , PE.refl , _ =
let [F]′ = [F] (id ⊢Δ)
[F]₁′ = [F]₁ (id ⊢Δ)
[t₁]′ = I.irrelevanceTerm [F]′ [F]₁′ [t₁]
[Gt₁] = [G] (id ⊢Δ) [t₁]
[Gt₁]₁ = [G]₁ (id ⊢Δ) [t₁]′
t₂®v₂′ = irrelevanceTermSV [Gt₁] [Gt₁]₁ t₂®v₂
(goodCasesRefl [Gt₁] [Gt₁]₁)
in t₁ , t₂ , t⇒t′ , [t₁]′ , v₂ , t₂®v₂′
, Σ-®-elim (λ _ → Σ-® _ _ [F]₁′ t₁ v v₂ p) extra
Σ-®-intro-𝟘
λ v₁ v⇒p t₁®v₁ p≢𝟘 →
Σ-®-intro-ω v₁ v⇒p (irrelevanceTermSV [F]′ [F]₁′ t₁®v₁
(goodCasesRefl [F]′ [F]₁′)) p≢𝟘
irrelevanceTermSV _ _ t®v (Idᵥ ⊩A@record{} ⊩B) =
case whrDet* (_⊩ₗId_.⇒*Id ⊩A , Idₙ) (_⊩ₗId_.⇒*Id ⊩B , Idₙ) of λ {
PE.refl →
t®v }
irrelevanceTermSV _ _ () (Emptyᵥ _ _)
irrelevanceTermSV _ _ () (ne record{} _)
irrelevanceTerm : ∀ {l l′ t v A}
→ ([A] : Δ ⊩⟨ l ⟩ A)
([A]′ : Δ ⊩⟨ l′ ⟩ A)
→ t ®⟨ l ⟩ v ∷ A / [A]
→ t ®⟨ l′ ⟩ v ∷ A / [A]′
irrelevanceTerm [A] [A]′ t®v =
irrelevanceTermSV [A] [A]′ t®v (goodCasesRefl [A] [A]′)
irrelevanceTerm′ : ∀ {l l′ t v A}
→ A PE.≡ A′
→ ([A] : Δ ⊩⟨ l ⟩ A)
→ ([A]′ : Δ ⊩⟨ l′ ⟩ A′)
→ t ®⟨ l ⟩ v ∷ A / [A]
→ t ®⟨ l′ ⟩ v ∷ A′ / [A]′
irrelevanceTerm′ PE.refl [A] [A]′ t®v = irrelevanceTerm [A] [A]′ t®v