open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typechecking.Completeness
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
(open Type-restrictions R)
⦃ no-equality-reflection : No-equality-reflection ⦄
where
open import Definition.Typechecking R
open import Definition.Typed R
open import Definition.Typed.EqRelInstance R
open import Definition.Typed.EqualityRelation.Instance R
open import Definition.Typed.InverseUniv R
open import Definition.Typed.Inversion R
open import Definition.Typed.Properties R
open import Definition.Typed.Stability R
open import Definition.Typed.Substitution R
import Definition.Typed.Weakening R as W
open import Definition.Typed.Consequences.Inequality R
open import Definition.Typed.Consequences.Reduction R
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Tools.Empty
open import Tools.Function
open import Tools.Nat
open import Tools.Product
private
variable
n : Nat
Γ : Con Term n
t u A B : Term n
mutual
completeness⇇Type : Checkable-type A → Γ ⊢ A → Γ ⊢ A ⇇Type
completeness⇇Type (ΠΣᶜ B C) ⊢A =
let ⊢B , ⊢C , ok = inversion-ΠΣ ⊢A in
ΠΣᶜ (completeness⇇Type B ⊢B) (completeness⇇Type C ⊢C) ok
completeness⇇Type (Idᶜ B t u) ⊢A =
let ⊢B , ⊢t , ⊢u = inversion-Id ⊢A in
Idᶜ (completeness⇇Type B ⊢B) (completeness⇇ t ⊢t)
(completeness⇇ u ⊢u)
completeness⇇Type (checkᶜ A) ⊢A =
completeness⇇Type′ A ⊢A
completeness⇇Type′ : Checkable A → Γ ⊢ A → Γ ⊢ A ⇇Type
completeness⇇Type′ (lamᶜ _) (univ ⊢A) =
let _ , _ , _ , _ , _ , U≡Π , _ = inversion-lam ⊢A in
⊥-elim (U≢ΠΣⱼ U≡Π)
completeness⇇Type′ (prodᶜ _ _) (univ ⊢A) =
let _ , _ , _ , _ , _ , _ , _ , U≡Σ , _ = inversion-prod ⊢A in
⊥-elim (U≢ΠΣⱼ U≡Σ)
completeness⇇Type′ rflᶜ (univ ⊢A) =
let _ , _ , _ , _ , U≡Id = inversion-rfl ⊢A in
⊥-elim (Id≢U (sym U≡Id))
completeness⇇Type′ (infᶜ A) ⊢A =
let _ , A , U≡ = completeness⇉ A (inverseUniv ⊢A .proj₂) in
univᶜ A (U-norm (sym U≡) , Uₙ)
completeness⇉ : Inferable t → Γ ⊢ t ∷ A → ∃ λ B → Γ ⊢ t ⇉ B × Γ ⊢ A ≡ B
completeness⇉ Uᵢ ⊢t =
_ , Uᵢ , inversion-U ⊢t
completeness⇉ (ΠΣᵢ B C) ⊢ΠΣ =
let _ , _ , ⊢B , ⊢C , A≡U , ok = inversion-ΠΣ-U ⊢ΠΣ
_ , B⇉D , U≡D = completeness⇉ B ⊢B
_ , C⇉E , U≡E = completeness⇉ C ⊢C
in
_
, ΠΣᵢ B⇉D (U-norm (sym U≡D) , Uₙ) C⇉E (U-norm (sym U≡E) , Uₙ) ok
, A≡U
completeness⇉ varᵢ ⊢t =
let B , x∷B∈Γ , A≡B = inversion-var ⊢t
in _ , varᵢ x∷B∈Γ , A≡B
completeness⇉ (∘ᵢ t u) ⊢tu =
let F , G , q , ⊢t , ⊢u , A≡Gu = inversion-app ⊢tu
B , t⇉B , ΠFG≡B = completeness⇉ t ⊢t
F′ , G′ , B⇒Π′ , F≡F′ , G≡G′ , _ = ΠΣNorm (sym ΠFG≡B)
⊢u′ = conv ⊢u F≡F′
u⇇G = completeness⇇ u ⊢u′
in _ , appᵢ t⇉B (B⇒Π′ , ΠΣₙ) u⇇G , trans A≡Gu (substTypeEq G≡G′ (refl ⊢u))
completeness⇉ (fstᵢ t) ⊢t =
let F , G , q , ⊢F , ⊢G , ⊢t , A≡F = inversion-fst ⊢t
B , t⇉B , ΣFG≡B = completeness⇉ t ⊢t
F′ , G′ , B⇒Σ′ , F≡F′ , G≡G′ = ΠΣNorm (sym ΣFG≡B)
in _ , fstᵢ t⇉B (B⇒Σ′ , ΠΣₙ) , trans A≡F F≡F′
completeness⇉ (sndᵢ t) ⊢t =
let F , G , q , _ , ⊢G , ⊢t , A≡Gt = inversion-snd ⊢t
B , t⇉B , ΣFG≡B = completeness⇉ t ⊢t
F′ , G′ , B⇒Σ′ , F≡F′ , G≡G′ , _ = ΠΣNorm (sym ΣFG≡B)
in
_ , sndᵢ t⇉B (B⇒Σ′ , ΠΣₙ) ,
trans A≡Gt (substTypeEq G≡G′ (refl (fstⱼ ⊢G ⊢t)))
completeness⇉ (prodrecᵢ C t u) ⊢t =
let F , G , q , _ , ⊢G , ⊢C , ⊢t , ⊢u , A≡Ct = inversion-prodrec ⊢t
ok = ⊢∷ΠΣ→ΠΣ-allowed ⊢t
B , t⇉B , ΣFG≡B = completeness⇉ t ⊢t
F′ , G′ , B⇒Σ′ , F≡F′ , G≡G′ , _ = ΠΣNorm (sym ΣFG≡B)
u⇇C₊ = completeness⇇ u (stabilityTerm (refl-∙ F≡F′ ∙ G≡G′) ⊢u)
C⇇Type = completeness⇇Type C $
stability (refl-∙ (ΠΣ-cong F≡F′ G≡G′ ok)) ⊢C
in _ , prodrecᵢ C⇇Type t⇉B (B⇒Σ′ , ΠΣₙ) u⇇C₊ , A≡Ct
completeness⇉ ℕᵢ ⊢t = _ , ℕᵢ , inversion-ℕ ⊢t
completeness⇉ zeroᵢ ⊢t = _ , zeroᵢ , inversion-zero ⊢t
completeness⇉ (sucᵢ t) ⊢t =
let ⊢t , A≡ℕ = inversion-suc ⊢t
t⇇ℕ = completeness⇇ t ⊢t
in _ , sucᵢ t⇇ℕ , A≡ℕ
completeness⇉ (natrecᵢ C z s n) ⊢t =
let ⊢C , ⊢z , ⊢s , ⊢n , A≡Cn = inversion-natrec ⊢t
z⇇C₀ = completeness⇇ z ⊢z
s⇇C₊ = completeness⇇ s ⊢s
n⇇ℕ = completeness⇇ n ⊢n
C⇇Type = completeness⇇Type C ⊢C
in _ , natrecᵢ C⇇Type z⇇C₀ s⇇C₊ n⇇ℕ , A≡Cn
completeness⇉ Unitᵢ ⊢t =
case inversion-Unit-U ⊢t of λ {
(≡U , ok) →
_ , Unitᵢ ok , ≡U }
completeness⇉ starᵢ ⊢t =
case inversion-star ⊢t of λ {
(≡Unit , ok) →
_ , starᵢ ok , ≡Unit }
completeness⇉ (unitrecᵢ A t u) ⊢t =
case inversion-unitrec ⊢t of λ {
(⊢A , ⊢t , ⊢u , A≡Ct) →
case completeness⇇Type A ⊢A of λ
A⇇Type →
case completeness⇇ t ⊢t of λ
t⇇Unit →
case completeness⇇ u ⊢u of λ
u⇇A₊ →
_ , unitrecᵢ A⇇Type t⇇Unit u⇇A₊ , A≡Ct }
completeness⇉ Emptyᵢ ⊢t = _ , Emptyᵢ , inversion-Empty ⊢t
completeness⇉ (emptyrecᵢ C t) ⊢t =
let ⊢C , ⊢t , A≡C = inversion-emptyrec ⊢t
t⇇Empty = completeness⇇ t ⊢t
C⇇Type = completeness⇇Type C ⊢C
in _ , emptyrecᵢ C⇇Type t⇇Empty , A≡C
completeness⇉ (Idᵢ B t u) ⊢Id =
let _ , ⊢B , ⊢t , ⊢u , A≡U = inversion-Id-U ⊢Id
_ , B⇉C , U≡C = completeness⇉ B ⊢B
in
_
, Idᵢ B⇉C (U-norm (sym U≡C) , Uₙ) (completeness⇇ t ⊢t)
(completeness⇇ u ⊢u)
, A≡U
completeness⇉ (Jᵢ A t B u v w) ⊢J =
case inversion-J ⊢J of λ {
(⊢A , ⊢t , ⊢B , ⊢u , ⊢v , ⊢w , ≡B) →
_
, Jᵢ (completeness⇇Type A ⊢A) (completeness⇇ t ⊢t)
(completeness⇇Type B ⊢B) (completeness⇇ u ⊢u)
(completeness⇇ v ⊢v) (completeness⇇ w ⊢w)
, ≡B }
completeness⇉ (Kᵢ A t B u v) ⊢K =
case inversion-K ⊢K of λ {
(⊢A , ⊢t , ⊢B , ⊢u , ⊢v , ok , ≡B) →
_
, Kᵢ (completeness⇇Type A ⊢A) (completeness⇇ t ⊢t)
(completeness⇇Type B ⊢B) (completeness⇇ u ⊢u)
(completeness⇇ v ⊢v) ok
, ≡B }
completeness⇉ ([]-congᵢ A t u v) ⊢[]-cong =
case inversion-[]-cong ⊢[]-cong of λ {
(⊢A , ⊢t , ⊢u , ⊢v , ok , ≡B) →
_
, []-congᵢ (completeness⇇Type A ⊢A) (completeness⇇ t ⊢t)
(completeness⇇ u ⊢u) (completeness⇇ v ⊢v) ok
, ≡B }
completeness⇇ : Checkable t → Γ ⊢ t ∷ A → Γ ⊢ t ⇇ A
completeness⇇ (lamᶜ t) ⊢t =
let F , G , q , _ , ⊢t , A≡ΠFG , _ = inversion-lam ⊢t
F′ , G′ , A⇒ΠF′G′ , F≡F′ , G≡G′ , _ = ΠΣNorm A≡ΠFG
t⇇G = completeness⇇ t
(stabilityTerm (refl-∙ F≡F′) (conv ⊢t G≡G′))
in lamᶜ (A⇒ΠF′G′ , ΠΣₙ) t⇇G
completeness⇇ (prodᶜ t u) ⊢t =
let F , G , m , ⊢F , ⊢G , ⊢t , ⊢u , A≡ΣFG , _ = inversion-prod ⊢t
F′ , G′ , A⇒ΣF′G′ , F≡F′ , G≡G′ , _ = ΠΣNorm A≡ΣFG
t⇇F = completeness⇇ t (conv ⊢t F≡F′)
u⇇Gt = completeness⇇ u (conv ⊢u (substTypeEq G≡G′ (refl ⊢t)))
in prodᶜ (A⇒ΣF′G′ , ΠΣₙ) t⇇F u⇇Gt
completeness⇇ rflᶜ ⊢rfl =
case inversion-rfl ⊢rfl of λ {
(_ , _ , _ , _ , A≡Id-B-t-t) →
case Id-norm A≡Id-B-t-t of λ {
(_ , _ , _ , A⇒*Id-B′-t′-u′ , A≡A′ , t≡t′ , t≡u′) →
rflᶜ (A⇒*Id-B′-t′-u′ , Idₙ)
(conv (trans (sym′ t≡t′) t≡u′) A≡A′) }}
completeness⇇ (infᶜ t) ⊢t =
let B , t⇉B , A≡B = completeness⇉ t ⊢t
in infᶜ t⇉B (sym A≡B)