open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Typed.Consequences.Inequality
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
where
open Type-restrictions R
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant as U
using (Neutral; No-η-equality; Whnf)
open import Definition.Typed R
open import Definition.Typed.EqRelInstance R
open import Definition.Typed.Properties R
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Hidden R
open import Definition.LogicalRelation.Irrelevance R
open import Definition.LogicalRelation.ShapeView R
open import Definition.LogicalRelation.Fundamental.Reducibility R
open import Tools.Function
open import Tools.Nat as Nat using (Nat)
open import Tools.Product
open import Tools.Relation
open import Tools.Empty
import Tools.PropositionalEquality as PE
open import Tools.Sum using (inj₁; inj₂)
private
variable
n : Nat
Γ : Con Term _
A B C D t u v : Term _
p p′ q q′ : M
b : BinderMode
s : Strength
l l₁ l₂ : Universe-level
opaque
unfolding _⊩⟨_⟩_≡_
A≢B :
⦃ ok : No-equality-reflection or-empty Γ ⦄
(_⊩′⟨_⟩A_ _⊩′⟨_⟩B_ : Con Term n → Universe-level → Term n → Set a)
(A-intr : ∀ {l} → Γ ⊩′⟨ l ⟩A A → Γ ⊩⟨ l ⟩ A)
(B-intr : ∀ {l} → Γ ⊩′⟨ l ⟩B B → Γ ⊩⟨ l ⟩ B) →
(∀ {l} → Γ ⊩⟨ l ⟩ A → Γ ⊩′⟨ l ⟩A A) →
(∀ {l} → Γ ⊩⟨ l ⟩ B → Γ ⊩′⟨ l ⟩B B) →
(∀ {l₁ l₂} {⊩A : Γ ⊩′⟨ l₁ ⟩A A} {⊩B : Γ ⊩′⟨ l₂ ⟩B B} →
¬ ShapeView Γ l₁ l₂ A B (A-intr ⊩A) (B-intr ⊩B)) →
¬ Γ ⊢ A ≡ B
A≢B _ _ A-intr B-intr A-elim B-elim A≢B′ A≡B =
let _ , ⊩A , ⊩B , A≡B = reducible-⊩≡ A≡B
⊩A′ = A-elim ⊩A
⊩B′ = B-elim ⊩B
A≡B′ = irrelevanceEq ⊩A (A-intr ⊩A′) A≡B
in
A≢B′ (goodCases (A-intr ⊩A′) (B-intr ⊩B′) A≡B′)
opaque
U≢ℕ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ U l ≡ ℕ
U≢ℕ =
A≢B _⊩′⟨_⟩U_ (λ Γ _ A → Γ ⊩ℕ A) Uᵣ ℕᵣ
U-elim ℕ-elim (λ ())
opaque
U≢Emptyⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ U l ≡ Empty
U≢Emptyⱼ =
A≢B _⊩′⟨_⟩U_ (λ Γ _ A → Γ ⊩Empty A) Uᵣ Emptyᵣ
U-elim Empty-elim (λ ())
opaque
U≢Unitⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ U l₁ ≡ Unit s l₂
U≢Unitⱼ {s} =
A≢B _⊩′⟨_⟩U_ _⊩Unit⟨_, s ⟩_ Uᵣ Unitᵣ
U-elim Unit-elim (λ ())
opaque
ℕ≢Emptyⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ ℕ ≡ Empty
ℕ≢Emptyⱼ =
A≢B (λ Γ _ A → Γ ⊩ℕ A) (λ Γ _ A → Γ ⊩Empty A) ℕᵣ Emptyᵣ
ℕ-elim Empty-elim (λ ())
opaque
ℕ≡Empty :
Equality-reflection →
∃ λ (Γ : Con Term 1) → Γ ⊢ ℕ ≡ Empty
ℕ≡Empty ok =
ε ∙ Id (U 0) ℕ Empty ,
univ
(equality-reflection′ ok $
var₀ (Idⱼ′ (ℕⱼ ε) (Emptyⱼ ε)))
opaque
ℕ≢Unitⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ ℕ ≡ Unit s l
ℕ≢Unitⱼ {s} =
A≢B (λ Γ _ A → Γ ⊩ℕ A) _⊩Unit⟨_, s ⟩_ ℕᵣ Unitᵣ
ℕ-elim Unit-elim (λ ())
opaque
Empty≢Unitⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Empty ≡ Unit s l
Empty≢Unitⱼ {s} =
A≢B (λ Γ _ A → Γ ⊩Empty A) _⊩Unit⟨_, s ⟩_ Emptyᵣ Unitᵣ
Empty-elim Unit-elim (λ ())
opaque
U≢ΠΣⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ U l ≡ ΠΣ⟨ b ⟩ p , q ▷ A ▹ B
U≢ΠΣⱼ =
let b = _ in
A≢B _⊩′⟨_⟩U_ _⊩′⟨_⟩B⟨ b ⟩_ Uᵣ (Bᵣ _)
U-elim B-elim (λ ())
opaque
U≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral A → ¬ Γ ⊢ U l ≡ A
U≢ne A-ne =
A≢B _⊩′⟨_⟩U_ (λ Γ _ A → Γ ⊩ne A) Uᵣ ne
U-elim (ne-elim A-ne) (λ ())
opaque
ℕ≢ΠΣⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ ℕ ≡ ΠΣ⟨ b ⟩ p , q ▷ A ▹ B
ℕ≢ΠΣⱼ =
let b = _ in
A≢B (λ Γ _ A → Γ ⊩ℕ A) _⊩′⟨_⟩B⟨ b ⟩_ ℕᵣ (Bᵣ _)
ℕ-elim B-elim (λ ())
opaque
Empty≢ΠΣⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Empty ≡ ΠΣ⟨ b ⟩ p , q ▷ A ▹ B
Empty≢ΠΣⱼ =
let b = _ in
A≢B (λ Γ _ A → Γ ⊩Empty A) _⊩′⟨_⟩B⟨ b ⟩_ Emptyᵣ (Bᵣ _)
Empty-elim B-elim (λ ())
opaque
Unit≢ΠΣⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Unit s l ≡ ΠΣ⟨ b ⟩ p , q ▷ B ▹ C
Unit≢ΠΣⱼ {s} =
let b = _ in
A≢B _⊩Unit⟨_, s ⟩_ _⊩′⟨_⟩B⟨ b ⟩_ Unitᵣ (Bᵣ _)
Unit-elim B-elim (λ ())
opaque
ℕ≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral A → ¬ Γ ⊢ ℕ ≡ A
ℕ≢ne A-ne =
A≢B (λ Γ _ A → Γ ⊩ℕ A) (λ Γ _ A → Γ ⊩ne A) ℕᵣ ne
ℕ-elim (ne-elim A-ne) (λ ())
opaque
Empty≢neⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral A → ¬ Γ ⊢ Empty ≡ A
Empty≢neⱼ A-ne =
A≢B (λ Γ _ A → Γ ⊩Empty A) (λ Γ _ A → Γ ⊩ne A) Emptyᵣ ne
Empty-elim (ne-elim A-ne) (λ ())
opaque
Unit≢neⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral A → ¬ Γ ⊢ Unit s l ≡ A
Unit≢neⱼ {s} A-ne =
A≢B _⊩Unit⟨_, s ⟩_ (λ Γ _ A → Γ ⊩ne A) Unitᵣ ne
Unit-elim (ne-elim A-ne) (λ ())
opaque
ΠΣ≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral C → ¬ Γ ⊢ ΠΣ⟨ b ⟩ p , q ▷ A ▹ B ≡ C
ΠΣ≢ne C-ne =
let b = _ in
A≢B _⊩′⟨_⟩B⟨ b ⟩_ (λ Γ _ A → Γ ⊩ne A) (Bᵣ _) ne
B-elim (ne-elim C-ne) (λ ())
opaque
Π≢Σⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Π p , q ▷ A ▹ B ≡ Σ⟨ s ⟩ p′ , q′ ▷ C ▹ D
Π≢Σⱼ =
let b₁ = _
b₂ = _
in
A≢B _⊩′⟨_⟩B⟨ b₁ ⟩_ _⊩′⟨_⟩B⟨ b₂ ⟩_ (Bᵣ _) (Bᵣ _)
B-elim B-elim (λ ())
opaque
Σˢ≢Σʷⱼ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Σˢ p , q ▷ A ▹ B ≡ Σʷ p′ , q′ ▷ C ▹ D
Σˢ≢Σʷⱼ =
let b₁ = _
b₂ = _
in
A≢B _⊩′⟨_⟩B⟨ b₁ ⟩_ _⊩′⟨_⟩B⟨ b₂ ⟩_ (Bᵣ _) (Bᵣ _)
B-elim B-elim (λ ())
opaque
Unitʷ≢Unitˢ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Unitʷ l₁ ≡ Unitˢ l₂
Unitʷ≢Unitˢ =
A≢B _⊩Unit⟨_, 𝕨 ⟩_ _⊩Unit⟨_, 𝕤 ⟩_ Unitᵣ Unitᵣ
Unit-elim Unit-elim (λ ())
opaque
Id≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral B → ¬ Γ ⊢ Id A t u ≡ B
Id≢ne B-ne =
A≢B _⊩′⟨_⟩Id_ (λ Γ _ A → Γ ⊩ne A) Idᵣ ne
Id-elim (ne-elim B-ne) (λ ())
opaque
Id≢U :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Id A t u ≡ U l
Id≢U =
A≢B _⊩′⟨_⟩Id_ _⊩′⟨_⟩U_ Idᵣ Uᵣ
Id-elim U-elim (λ ())
opaque
Id≢ℕ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Id A t u ≡ ℕ
Id≢ℕ =
A≢B _⊩′⟨_⟩Id_ (λ Γ _ A → Γ ⊩ℕ A) Idᵣ ℕᵣ
Id-elim ℕ-elim (λ ())
opaque
Id≢Unit :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Id A t u ≡ Unit s l
Id≢Unit {s} =
A≢B _⊩′⟨_⟩Id_ _⊩Unit⟨_, s ⟩_ Idᵣ Unitᵣ
Id-elim Unit-elim (λ ())
opaque
Id≢Empty :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Id A t u ≡ Empty
Id≢Empty =
A≢B _⊩′⟨_⟩Id_ (λ Γ _ A → Γ ⊩Empty A) Idᵣ Emptyᵣ
Id-elim Empty-elim (λ ())
opaque
Id≢ΠΣ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Γ ⊢ Id A t u ≡ ΠΣ⟨ b ⟩ p , q ▷ B ▹ C
Id≢ΠΣ =
let b = _ in
A≢B _⊩′⟨_⟩Id_ _⊩′⟨_⟩B⟨ b ⟩_ Idᵣ (Bᵣ _)
Id-elim B-elim (λ ())
No-η-equality→≢Π :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
No-η-equality A → Γ ⊢ A ≡ Π p , q ▷ B ▹ C → ⊥
No-η-equality→≢Π = λ where
U.Uₙ U≡Π → U≢ΠΣⱼ U≡Π
U.Σʷₙ Σʷ≡Π → Π≢Σⱼ (sym Σʷ≡Π)
U.Emptyₙ Empty≡Π → Empty≢ΠΣⱼ Empty≡Π
U.ℕₙ ℕ≡Π → ℕ≢ΠΣⱼ ℕ≡Π
U.Idₙ Id≡Π → Id≢ΠΣ Id≡Π
(U.Unitʷₙ _) Unit≡Π → Unit≢ΠΣⱼ Unit≡Π
(U.neₙ A-ne) A≡Π → ΠΣ≢ne A-ne (sym A≡Π)
No-η-equality→≢Σˢ :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
No-η-equality A → Γ ⊢ A ≡ Σˢ p , q ▷ B ▹ C → ⊥
No-η-equality→≢Σˢ = λ where
U.Uₙ U≡Σ → U≢ΠΣⱼ U≡Σ
U.Σʷₙ Σʷ≡Σ → Σˢ≢Σʷⱼ (sym Σʷ≡Σ)
U.Emptyₙ Empty≡Σ → Empty≢ΠΣⱼ Empty≡Σ
U.ℕₙ ℕ≡Σ → ℕ≢ΠΣⱼ ℕ≡Σ
U.Idₙ Id≡Σ → Id≢ΠΣ Id≡Σ
(U.Unitʷₙ _) Unit≡Σ → Unit≢ΠΣⱼ Unit≡Σ
(U.neₙ A-ne) A≡Σ → ΠΣ≢ne A-ne (sym A≡Σ)
No-η-equality→≢Unit :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
No-η-equality A → Γ ⊢ A ≡ Unit s l → ¬ Unit-with-η s
No-η-equality→≢Unit = λ where
U.Uₙ U≡Unit _ → U≢Unitⱼ U≡Unit
U.Σʷₙ Σʷ≡Unit _ → Unit≢ΠΣⱼ (sym Σʷ≡Unit)
U.Emptyₙ Empty≡Unit _ → Empty≢Unitⱼ Empty≡Unit
U.ℕₙ ℕ≡Unit _ → ℕ≢Unitⱼ ℕ≡Unit
U.Idₙ Id≡Unit _ → Id≢Unit Id≡Unit
(U.Unitʷₙ _) Unitʷ≡Unitˢ (inj₁ PE.refl) → Unitʷ≢Unitˢ Unitʷ≡Unitˢ
(U.Unitʷₙ no-η) _ (inj₂ η) → no-η η
(U.neₙ A-ne) A≡Unit _ → Unit≢neⱼ A-ne
(sym A≡Unit)
whnf≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
No-η-equality A → Whnf t → ¬ Neutral t → Neutral u →
¬ Γ ⊢ t ≡ u ∷ A
whnf≢ne {Γ} {A} {t} {u} ¬-A-η t-whnf ¬-t-ne u-ne t≡u =
case reducible-⊩≡∷ t≡u of λ
(_ , t≡u) →
case wf-⊩∷ $ wf-⊩≡∷ t≡u .proj₁ of λ
⊩A →
lemma ⊩A (⊩≡∷→⊩≡∷/ ⊩A t≡u)
where
A⇒*no-η : Γ ⊢ A ⇒* B → No-η-equality B
A⇒*no-η A⇒*B =
case whnfRed* A⇒*B (U.No-η-equality→Whnf ¬-A-η) of λ {
PE.refl →
¬-A-η }
¬t⇒*ne : Γ ⊢ t ⇒* v ∷ B → ¬ Neutral v
¬t⇒*ne t⇒*v v-ne =
case whnfRed*Term t⇒*v t-whnf of λ {
PE.refl →
¬-t-ne v-ne }
u⇒*ne : Γ ⊢ u ⇒* v ∷ B → Neutral v
u⇒*ne u⇒*v =
case whnfRed*Term u⇒*v (U.ne u-ne) of λ {
PE.refl →
u-ne }
lemma : ([A] : Γ ⊩⟨ l ⟩ A) → ¬ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
lemma = λ where
(ℕᵣ _) (ℕₜ₌ _ _ _ u⇒*zero _ zeroᵣ) →
U.zero≢ne (u⇒*ne u⇒*zero) PE.refl
(ℕᵣ _) (ℕₜ₌ _ _ _ u⇒*suc _ (sucᵣ _)) →
U.suc≢ne (u⇒*ne u⇒*suc) PE.refl
(ℕᵣ _) (ℕₜ₌ _ _ t⇒*v _ _ (ne (neNfₜ₌ _ v-ne _ _))) →
¬t⇒*ne t⇒*v v-ne
(Emptyᵣ _) (Emptyₜ₌ _ _ t⇒*v _ _ (ne (neNfₜ₌ _ v-ne _ _))) →
¬t⇒*ne t⇒*v v-ne
(Unitᵣ′ _ _ A⇒*Unit _) (Unitₜ₌ _ _ (d , _) (d′ , _) prop) →
case A⇒*no-η A⇒*Unit of λ where
(U.neₙ ())
(U.Unitʷₙ no-η) → case prop of λ where
(Unitₜ₌ʷ starᵣ _) →
U.star≢ne (u⇒*ne d′) PE.refl
(Unitₜ₌ʷ (ne (neNfₜ₌ _ neK _ _)) _) →
¬t⇒*ne d neK
(Unitₜ₌ˢ η) →
no-η (Unit-with-η-𝕨→Unitʷ-η η)
(ne _) (neₜ₌ _ _ t⇒*v _ (neNfₜ₌ _ v-ne _ _)) →
¬t⇒*ne t⇒*v v-ne
(Bᵣ BΠ! (Bᵣ _ _ A⇒*Π _ _ _ _ _)) _ →
case A⇒*no-η A⇒*Π of λ where
(U.neₙ ())
(Bᵣ BΣˢ (Bᵣ _ _ A⇒*Σ _ _ _ _ _)) _ →
case A⇒*no-η A⇒*Σ of λ where
(U.neₙ ())
(Bᵣ BΣʷ record{}) (_ , _ , _ , u⇒*w , _ , _ , U.prodₙ , _) →
U.prod≢ne (u⇒*ne u⇒*w) PE.refl
(Bᵣ BΣʷ record{}) (_ , _ , t⇒*v , _ , _ , U.ne v-ne , _) →
¬t⇒*ne t⇒*v v-ne
(Bᵣ BΣʷ record{}) (_ , _ , _ , _ , _ , U.prodₙ , U.ne _ , ())
(Idᵣ ⊩Id) t≡u@(_ , _ , t⇒*t′ , u⇒*u′ , _) →
case ⊩Id≡∷-view-inhabited ⊩Id t≡u of λ where
(ne _ t′-ne _ _) → ¬t⇒*ne t⇒*t′ t′-ne
(rfl₌ _) → U.rfl≢ne (u⇒*ne u⇒*u′) PE.refl
(Uᵣ _) (Uₜ₌ _ _ t⇒*A u⇒*B A-type B-type A≡B _ _ _) →
case B-type of λ where
U.Uₙ → U.U≢ne (u⇒*ne u⇒*B) PE.refl
U.ΠΣₙ → U.ΠΣ≢ne _ (u⇒*ne u⇒*B) PE.refl
U.ℕₙ → U.ℕ≢ne (u⇒*ne u⇒*B) PE.refl
U.Emptyₙ → U.Empty≢ne (u⇒*ne u⇒*B) PE.refl
U.Unitₙ → U.Unit≢ne (u⇒*ne u⇒*B) PE.refl
U.Idₙ → U.Id≢ne (u⇒*ne u⇒*B) PE.refl
(U.ne B-ne) → case A-type of λ where
(U.ne A-ne) → ⊥-elim (¬t⇒*ne t⇒*A A-ne)
U.Uₙ → U≢ne B-ne (univ A≡B)
U.ΠΣₙ → ΠΣ≢ne B-ne (univ A≡B)
U.ℕₙ → ℕ≢ne B-ne (univ A≡B)
U.Emptyₙ → Empty≢neⱼ B-ne (univ A≡B)
U.Unitₙ → Unit≢neⱼ B-ne (univ A≡B)
U.Idₙ → Id≢ne B-ne (univ A≡B)
zero≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral t →
¬ Γ ⊢ zero ≡ t ∷ ℕ
zero≢ne = whnf≢ne U.ℕₙ U.zeroₙ (λ ())
suc≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral u →
¬ Γ ⊢ suc t ≡ u ∷ ℕ
suc≢ne = whnf≢ne U.ℕₙ U.sucₙ (λ ())
starʷ≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
¬ Unitʷ-η →
Neutral t →
¬ Γ ⊢ starʷ l ≡ t ∷ Unitʷ l
starʷ≢ne no-η = whnf≢ne (U.Unitʷₙ no-η) U.starₙ (λ ())
prodʷ≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral v →
¬ Γ ⊢ prodʷ p t u ≡ v ∷ Σʷ p , q ▷ A ▹ B
prodʷ≢ne = whnf≢ne U.Σʷₙ U.prodₙ (λ ())
rfl≢ne :
⦃ ok : No-equality-reflection or-empty Γ ⦄ →
Neutral v →
¬ Γ ⊢ rfl ≡ v ∷ Id A t u
rfl≢ne = whnf≢ne U.Idₙ U.rflₙ (λ ())