open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Conversion
{a} {M : Set a}
{𝕄 : Modality M}
{R : Type-restrictions 𝕄}
(as : Assumptions R)
where
open Assumptions as
open Modality 𝕄
open Type-restrictions R
open import Graded.Erasure.LogicalRelation as
import Graded.Erasure.Target as T
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Hidden R
open import Definition.LogicalRelation.Fundamental.Reducibility R
open import Definition.LogicalRelation.ShapeView R
open import Definition.LogicalRelation.Properties.Conversion R
open import Definition.LogicalRelation.Properties.Escape R
open import Definition.LogicalRelation.Weakening.Restricted R
open import Definition.Untyped M
open import Definition.Untyped.Properties M
open import Definition.Typed R
open import Definition.Typed.Consequences.Injectivity R
open import Definition.Typed.Properties R
open import Definition.Typed.Reasoning.Type R
open import Tools.Function
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Relation
private
variable
n : Nat
Γ : Con Term n
A B t : Term n
v : T.Term n
p : M
convTermʳ′ : ∀ {l l′}
→ ([A] : Δ ⊩⟨ l ⟩ A)
([B] : Δ ⊩⟨ l′ ⟩ B)
→ Δ ⊢ A ≡ B
→ ShapeView Δ l l′ A B [A] [B]
→ t ®⟨ l ⟩ v ∷ A / [A]
→ t ®⟨ l′ ⟩ v ∷ B / [B]
convTermʳ′ _ _ A≡B (Uᵥ UA UB) t®v = t®v
convTermʳ′ _ _ A≡B (ℕᵥ ℕA ℕB) t®v = t®v
convTermʳ′
{A} {B}
_ _ A≡B (Unitᵥ {s} (Unitᵣ l _ A⇒*Unit _) (Unitᵣ l′ _ B⇒*Unit _)) t®v =
case Unit-injectivity
(Unit s l ≡˘⟨ subset* A⇒*Unit ⟩⊢
A ≡⟨ A≡B ⟩⊢
B ≡⟨ subset* B⇒*Unit ⟩⊢∎
Unit s l′ ∎) of λ {
(_ , PE.refl) →
t®v }
convTermʳ′
[A] [B] A≡B
(Bᵥ (BΠ p q) (Bᵣ F G A⇒Π A≡A [F] [G] G-ext _)
(Bᵣ F₁ G₁ B⇒Π₁ A≡A₁ [F]₁ [G]₁ G-ext₁ _))
t®v
with is-𝟘? p
... | yes PE.refl = t®v .proj₁ , λ [a]′ →
let Π≡Π₁ = reduction′ A⇒Π B⇒Π₁ A≡B
F≡F₁ , G≡G₁ , _ , _ = ΠΣ-injectivity Π≡Π₁
[F₁≡F] = ⊩≡→⊩≡/ ([F]₁ _) $
PE.subst₂ (_⊩⟨_⟩_≡_ _ _) (PE.sym $ wk-id _)
(PE.sym $ wk-id _) $
reducible-⊩≡ (sym F≡F₁) .proj₂
[a] = convTerm₁ ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) [F₁≡F] [a]′
G[a]≡G₁[a] =
PE.subst₂ (_⊢_≡_ _)
(PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id G)
(PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id G₁) $
G≡G₁ $ _⊢_≡_∷_.refl $
PE.subst (_⊢_∷_ _ _) (wk-id _) $
escapeTerm ([F] (id ⊢Δ)) [a]
[Ga≡G₁a] = ⊩≡→⊩≡/ ([G] _ _) (reducible-⊩≡ G[a]≡G₁[a] .proj₂)
t®v′ = t®v .proj₂ [a]
SV = goodCases ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′) [Ga≡G₁a]
in convTermʳ′ ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′) G[a]≡G₁[a] SV t®v′
... | no p≢𝟘 = t®v .proj₁ , λ [a]′ a®w′ →
let Π≡Π₁ = reduction′ A⇒Π B⇒Π₁ A≡B
F≡F₁ , G≡G₁ , _ , _ = ΠΣ-injectivity Π≡Π₁
[F₁≡F] = ⊩≡→⊩≡/ ([F]₁ _) $
PE.subst₂ (_⊩⟨_⟩_≡_ _ _) (PE.sym $ wk-id _)
(PE.sym $ wk-id _) $
reducible-⊩≡ (sym F≡F₁) .proj₂
[a] = convTerm₁ ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) [F₁≡F] [a]′
G[a]≡G₁[a] =
PE.subst₂ (_⊢_≡_ _)
(PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id G)
(PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id G₁) $
G≡G₁ $ _⊢_≡_∷_.refl $
PE.subst (_⊢_∷_ _ _) (wk-id _) $
escapeTerm ([F] (id ⊢Δ)) [a]
[Ga≡G₁a] = ⊩≡→⊩≡/ ([G] _ _) (reducible-⊩≡ G[a]≡G₁[a] .proj₂)
SV = goodCases ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) [F₁≡F]
F₁≡F = PE.subst₂ (Δ ⊢_≡_) (PE.sym (wk-id F₁)) (PE.sym (wk-id F)) (sym F≡F₁)
a®w = convTermʳ′ ([F]₁ (id ⊢Δ)) ([F] (id ⊢Δ)) F₁≡F SV a®w′
t®v′ = t®v .proj₂ [a] a®w
SV′ = goodCases ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′) [Ga≡G₁a]
in convTermʳ′ ([G] (id ⊢Δ) [a]) ([G]₁ (id ⊢Δ) [a]′) G[a]≡G₁[a] SV′ t®v′
convTermʳ′ {v = v}
[A] [B] A≡B
(Bᵥ (BΣ _ p _) (Bᵣ F G A⇒Σ A≡A [F] [G] G-ext _)
(Bᵣ F₁ G₁ B⇒Σ₁ A≡A₁ [F]₁ [G]₁ G-ext₁ _))
(t₁ , t₂ , t⇒t′ , [t₁] , v₂ , t₂®v₂ , extra) =
let Σ≡Σ₁ = reduction′ A⇒Σ B⇒Σ₁ A≡B
F≡F₁ , G≡G₁ , _ = ΠΣ-injectivity Σ≡Σ₁
[F]′ = [F] (id ⊢Δ)
[F]₁′ = [F]₁ (id ⊢Δ)
[F≡F₁] = ⊩≡→⊩≡/ [F]′ $
PE.subst₂ (_⊩⟨_⟩_≡_ _ _) (PE.sym $ wk-id _)
(PE.sym $ wk-id _) $
reducible-⊩≡ F≡F₁ .proj₂
F≡F₁′ = PE.subst₂ (Δ ⊢_≡_) (PE.sym (wk-id F)) (PE.sym (wk-id F₁)) F≡F₁
[t₁]′ = convTerm₁ [F]′ [F]₁′ [F≡F₁] [t₁]
G[t₁]≡G₁[t₁] =
PE.subst₂ (_⊢_≡_ _)
(PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id G)
(PE.sym $ PE.cong _[ _ ]₀ $ wk-lift-id G₁) $
G≡G₁ $ _⊢_≡_∷_.refl $
PE.subst (_⊢_∷_ _ _) (wk-id _) $
escapeTerm [F]′ [t₁]
[Gt₁] = [G] (id ⊢Δ) [t₁]
[Gt₁]₁ = [G]₁ (id ⊢Δ) [t₁]′
[Gt₁≡G₁t₁] = ⊩≡→⊩≡/ [Gt₁] (reducible-⊩≡ G[t₁]≡G₁[t₁] .proj₂)
t⇒t″ = conv-⇛ t⇒t′ Σ≡Σ₁
SV₂ = goodCases [Gt₁] [Gt₁]₁ [Gt₁≡G₁t₁]
t₂®v₂′ = convTermʳ′ [Gt₁] [Gt₁]₁ G[t₁]≡G₁[t₁] SV₂ t₂®v₂
SV₁ = goodCases [F]′ [F]₁′ [F≡F₁]
extra′ =
Σ-®-elim (λ _ → Σ-® _ _ [F]₁′ t₁ v v₂ p) extra
Σ-®-intro-𝟘
λ v₁ v⇒p t₁®v₁ →
let t₁®v₁′ = convTermʳ′ [F]′ [F]₁′ F≡F₁′ SV₁ t₁®v₁
in Σ-®-intro-ω v₁ v⇒p t₁®v₁′
in t₁ , t₂ , t⇒t″ , [t₁]′ , v₂ , t₂®v₂′ , extra′
convTermʳ′ {A} {B} _ _ A≡B (Idᵥ ⊩A ⊩B) (rflᵣ t⇒*rfl ⇒*↯) =
rflᵣ
(conv-⇛ t⇒*rfl
(Id (_⊩ₗId_.Ty ⊩A) (_⊩ₗId_.lhs ⊩A) (_⊩ₗId_.rhs ⊩A) ≡˘⟨ subset* (_⊩ₗId_.⇒*Id ⊩A) ⟩⊢
A ≡⟨ A≡B ⟩⊢
B ≡⟨ subset* (_⊩ₗId_.⇒*Id ⊩B) ⟩⊢∎
Id (_⊩ₗId_.Ty ⊩B) (_⊩ₗId_.lhs ⊩B) (_⊩ₗId_.rhs ⊩B) ∎))
⇒*↯
convTermʳ′ _ _ _ (Emptyᵥ _ _) ()
convTermʳ′ _ _ _ (ne record{} _) ()
convTermʳ : ∀ {l l′ A B t v}
→ ([A] : Δ ⊩⟨ l ⟩ A)
([B] : Δ ⊩⟨ l′ ⟩ B)
→ Δ ⊢ A ≡ B
→ t ®⟨ l ⟩ v ∷ A / [A]
→ t ®⟨ l′ ⟩ v ∷ B / [B]
convTermʳ [A] [B] A≡B t®v =
let [A≡B] = ⊩≡→⊩≡/ [A] (reducible-⊩≡ A≡B .proj₂)
in convTermʳ′ [A] [B] A≡B (goodCases [A] [B] [A≡B]) t®v