open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Reduction
{a} {M : Set a}
{𝕄 : Modality M}
{R : Type-restrictions 𝕄}
(as : Assumptions R)
where
open Assumptions as
open Modality 𝕄
open Type-restrictions R
open import Definition.LogicalRelation.Simplified R
open import Definition.Untyped M as U
open import Definition.Untyped.Neutral M type-variant
open import Definition.Typed R
open import Definition.Typed.Properties R
open import Definition.Untyped.Properties M as UP using (wk-id ; wk-lift-id)
open import Graded.Erasure.Extraction.Properties 𝕄
open import Graded.Erasure.LogicalRelation as
open import Graded.Erasure.Target as T hiding (_⇒_; _⇒*_)
open import Graded.Erasure.Target.Properties as TP
open import Graded.Erasure.Target.Reasoning
open import Tools.Function
open import Tools.Nat
open import Tools.Product as Σ
import Tools.PropositionalEquality as PE
open import Tools.Relation
open import Tools.Sum using (inj₁; inj₂)
private
variable
n : Nat
t t′ A : U.Term n
v v′ : T.Term n
Γ : U.Con U.Term n
opaque
sourceRedSubstTerm :
([A] : Δ ⊨ A) →
t′ ® v ∷ A / [A] →
t ⇛ t′ ∷ A →
t ® v ∷ A / [A]
sourceRedSubstTerm (Uᵣ _) (Uᵣ ⇒*↯) _ =
Uᵣ ⇒*↯
sourceRedSubstTerm (ℕᵣ D) (zeroᵣ t′⇒zero v⇒v′) t⇒t′ =
zeroᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* D)) t′⇒zero) v⇒v′
sourceRedSubstTerm (ℕᵣ ⇒*ℕ) (sucᵣ t′⇒suc v⇒v′ num t®v) t⇒t′ =
sucᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* ⇒*ℕ)) t′⇒suc) v⇒v′ num t®v
sourceRedSubstTerm (Unitᵣ′ _ D) (starᵣ t′⇒star v⇒star) t⇒t′ =
starᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* D)) t′⇒star) v⇒star
sourceRedSubstTerm (Bᵣ′ BMΠ p q F G D [F] [G]) t®v t⇒t′
with is-𝟘? p
... | yes PE.refl = t®v .proj₁ , λ {a = a} ⊢a →
sourceRedSubstTerm ([G] ⊢a) (t®v .proj₂ ⊢a)
(app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a)
... | no p≢𝟘 = t®v .proj₁ , λ {a = a} ⊢a a®w →
sourceRedSubstTerm ([G] ⊢a) (t®v .proj₂ ⊢a a®w)
(app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a)
sourceRedSubstTerm
(Bᵣ′ (BMΣ _) _ _ F G D [F] [G])
(t₁ , t₂ , t′⇒p , ⊢t₁ , v₂ , t₂®v₂ , extra) t⇒t′ =
t₁ , t₂ , trans-⇛ (conv-⇛ t⇒t′ (subset* D)) t′⇒p , ⊢t₁ , v₂ , t₂®v₂ ,
extra
sourceRedSubstTerm (Idᵣ ⊩A) (rflᵣ t′⇒*rfl ⇒*↯) t⇒t′ =
rflᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* (_⊨Id_.⇒*Id ⊩A))) t′⇒*rfl) ⇒*↯
sourceRedSubstTerm (ne record{}) ()
sourceRedSubstTerm (Emptyᵣ _) ()
opaque
targetRedSubstTerm :
([A] : Δ ⊨ A) →
t ® v′ ∷ A / [A] →
v T.⇒ v′ →
t ® v ∷ A / [A]
targetRedSubstTerm (Uᵣ _) (Uᵣ ⇒*↯) v⇒v′ = Uᵣ (T.trans v⇒v′ ∘→ ⇒*↯)
targetRedSubstTerm (ℕᵣ x) (zeroᵣ t′⇒zero v′⇒zero) v⇒v′ = zeroᵣ t′⇒zero (trans v⇒v′ v′⇒zero)
targetRedSubstTerm (ℕᵣ _) (sucᵣ t′⇒suc v′⇒suc num t®v) v⇒v′ =
sucᵣ t′⇒suc (trans v⇒v′ v′⇒suc) num t®v
targetRedSubstTerm (Unitᵣ x) (starᵣ x₁ v′⇒star) v⇒v′ = starᵣ x₁ (trans v⇒v′ v′⇒star)
targetRedSubstTerm
(Bᵣ′ BMΠ p q F G D [F] [G]) (v′⇒*lam , t®v) v⇒v′
with is-𝟘? p | Σ.map idᶠ (T.trans v⇒v′) ∘→ v′⇒*lam
... | yes PE.refl | v⇒*lam = v⇒*lam , λ ⊢a →
targetRedSubstTerm ([G] ⊢a) (t®v ⊢a) (app-𝟘′-subst v⇒v′)
... | no p≢𝟘 | v⇒*lam = v⇒*lam , λ ⊢a a®w →
targetRedSubstTerm ([G] ⊢a) (t®v ⊢a a®w) (app-subst v⇒v′)
targetRedSubstTerm {A = A} {t = t} {v = v}
[Σ]@(Bᵣ′ (BMΣ _) p _ F G D [F] [G])
(t₁ , t₂ , t⇒t′ , ⊢t₁ , v₂ , t₂®v₂ , extra) v⇒v′ =
t₁ , t₂ , t⇒t′ , ⊢t₁ , v₂ , t₂®v₂
, Σ-®-elim (λ _ → Σ-® F [F] t₁ v v₂ p) extra
(λ v′⇒v₂ → Σ-®-intro-𝟘 (trans v⇒v′ v′⇒v₂))
(λ v₁ v′⇒p t₁®v₁ → Σ-®-intro-ω v₁ (trans v⇒v′ v′⇒p) t₁®v₁)
targetRedSubstTerm (Idᵣ _) (rflᵣ t⇒*rfl ⇒*↯) v⇒v′ =
rflᵣ t⇒*rfl (T.trans v⇒v′ ∘→ ⇒*↯)
targetRedSubstTerm (ne record{}) ()
targetRedSubstTerm (Emptyᵣ _) ()
opaque
targetRedSubstTerm* :
([A] : Δ ⊨ A) →
t ® v′ ∷ A / [A] →
v T.⇒* v′ →
t ® v ∷ A / [A]
targetRedSubstTerm* [A] t®v′ refl = t®v′
targetRedSubstTerm* [A] t®v′ (trans x v⇒v′) =
targetRedSubstTerm [A] (targetRedSubstTerm* [A] t®v′ v⇒v′) x
opaque
redSubstTerm :
([A] : Δ ⊨ A) →
t′ ® v′ ∷ A / [A] →
t ⇛ t′ ∷ A →
v T.⇒ v′ →
t ® v ∷ A / [A]
redSubstTerm [A] t′®v′ t⇒t′ v⇒v′ =
targetRedSubstTerm [A] (sourceRedSubstTerm [A] t′®v′ t⇒t′) v⇒v′
opaque
redSubstTerm* :
([A] : Δ ⊨ A) →
t′ ® v′ ∷ A / [A] →
t ⇛ t′ ∷ A →
v T.⇒* v′ →
t ® v ∷ A / [A]
redSubstTerm* [A] t′®v′ t⇒t′ v⇒v′ =
targetRedSubstTerm* [A] (sourceRedSubstTerm [A] t′®v′ t⇒t′) v⇒v′
opaque
sourceRedSubstTerm′ :
([A] : Δ ⊨ A) →
t ® v ∷ A / [A] →
t ⇛ t′ ∷ A →
t′ ® v ∷ A / [A]
sourceRedSubstTerm′ (Uᵣ _) (Uᵣ ⇒*↯) _ =
Uᵣ ⇒*↯
sourceRedSubstTerm′ (ℕᵣ D) (zeroᵣ t⇒zero v⇒zero) t⇒t′
with whnf-⇛ t⇒zero zeroₙ (conv-⇛ t⇒t′ (subset* D))
... | t′⇒zero = zeroᵣ t′⇒zero v⇒zero
sourceRedSubstTerm′ (ℕᵣ D) (sucᵣ t⇒suc v⇒suc num t®v) t⇒t′
with whnf-⇛ t⇒suc sucₙ (conv-⇛ t⇒t′ (subset* D))
... | t′⇒suc = sucᵣ t′⇒suc v⇒suc num t®v
sourceRedSubstTerm′ (Unitᵣ′ _ x) (starᵣ t⇒star v⇒star) t⇒t′
with whnf-⇛ t⇒star starₙ (conv-⇛ t⇒t′ (subset* x))
... | t′⇒star = starᵣ t′⇒star v⇒star
sourceRedSubstTerm′
(Bᵣ′ BMΠ p q F G D [F] [G]) t®v t⇒t′
with is-𝟘? p
... | yes PE.refl = t®v .proj₁ , λ ⊢a →
sourceRedSubstTerm′ ([G] ⊢a) (t®v .proj₂ ⊢a)
(app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a)
... | no p≢𝟘 = t®v .proj₁ , λ {a = a} ⊢a a®w →
sourceRedSubstTerm′ ([G] ⊢a) (t®v .proj₂ ⊢a a®w)
(app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a)
sourceRedSubstTerm′
(Bᵣ′ (BMΣ _) _ _ F G D [F] [G])
(t₁ , t₂ , t⇒p , ⊢t₁ , v₂ , t₂®v₂ , extra) t⇒t′ =
t₁ , t₂
, whnf-⇛ t⇒p prodₙ (conv-⇛ t⇒t′ (subset* D))
, ⊢t₁ , v₂ , t₂®v₂ , extra
sourceRedSubstTerm′ (Idᵣ ⊩A) (rflᵣ t⇒*rfl ⇒*↯) t⇒t′ =
rflᵣ (whnf-⇛ t⇒*rfl rflₙ (conv-⇛ t⇒t′ (subset* (_⊨Id_.⇒*Id ⊩A)))) ⇒*↯
sourceRedSubstTerm′ (ne record{}) ()
sourceRedSubstTerm′ (Emptyᵣ _) ()
private opaque
Π-lemma :
v T.⇒ v′ →
(∃ λ v″ → v T.⇒* T.lam v″) →
(∃ λ v″ → v′ T.⇒* T.lam v″)
Π-lemma v⇒v′ (_ , v⇒*lam)
with red*Det v⇒*lam (T.trans v⇒v′ T.refl)
… | inj₁ lam⇒*v′ rewrite Value→⇒*→≡ T.lam lam⇒*v′ = _ , T.refl
… | inj₂ v′⇒*lam = _ , v′⇒*lam
⇒*↯→⇒→⇒*↯ :
(str PE.≡ strict → v T.⇒* ↯) → v T.⇒ v′ →
str PE.≡ strict → v′ T.⇒* ↯
⇒*↯→⇒→⇒*↯ {v′} v⇒*↯ v⇒v′ ≡strict =
case red*Det (v⇒*↯ ≡strict) (T.trans v⇒v′ T.refl) of λ where
(inj₂ v′⇒*↯) → v′⇒*↯
(inj₁ ↯⇒*v′) →
v′ ≡⟨ ↯-noRed ↯⇒*v′ ⟩⇒
↯ ∎⇒
opaque
targetRedSubstTerm*′ :
([A] : Δ ⊨ A) → t ® v ∷ A / [A] →
v T.⇒* v′ → t ® v′ ∷ A / [A]
targetRedSubstTerm′ : ([A] : Δ ⊨ A) → t ® v ∷ A / [A]
→ v T.⇒ v′ → t ® v′ ∷ A / [A]
targetRedSubstTerm′ (Uᵣ _) (Uᵣ v⇒*↯) v⇒v′ =
Uᵣ (⇒*↯→⇒→⇒*↯ v⇒*↯ v⇒v′)
targetRedSubstTerm′ (ℕᵣ x) (zeroᵣ x₁ v⇒zero) v⇒v′ with red*Det v⇒zero (T.trans v⇒v′ T.refl)
... | inj₁ x₂ rewrite zero-noRed x₂ = zeroᵣ x₁ T.refl
... | inj₂ x₂ = zeroᵣ x₁ x₂
targetRedSubstTerm′ (ℕᵣ _) (sucᵣ t⇒suc v⇒suc num t®v) v⇒v′
with red*Det v⇒suc (T.trans v⇒v′ T.refl)
... | inj₁ suc⇒* rewrite suc-noRed suc⇒* = sucᵣ t⇒suc T.refl num t®v
... | inj₂ ⇒*suc = sucᵣ t⇒suc ⇒*suc num t®v
targetRedSubstTerm′ (Unitᵣ x) (starᵣ x₁ v⇒star) v⇒v′ with red*Det v⇒star (T.trans v⇒v′ T.refl)
... | inj₁ x₂ rewrite star-noRed x₂ = starᵣ x₁ T.refl
... | inj₂ x₂ = starᵣ x₁ x₂
targetRedSubstTerm′
(Bᵣ′ BMΠ p q F G D [F] [G]) t®v v⇒v′
with is-𝟘? p
... | yes PE.refl = Π-lemma v⇒v′ ∘→ t®v .proj₁ , λ ⊢a →
targetRedSubstTerm′ ([G] ⊢a) (t®v .proj₂ ⊢a) (app-𝟘′-subst v⇒v′)
... | no p≢𝟘 = Π-lemma v⇒v′ ∘→ t®v .proj₁ , λ ⊢a a®w →
targetRedSubstTerm′ ([G] ⊢a) (t®v .proj₂ ⊢a a®w) (T.app-subst v⇒v′)
targetRedSubstTerm′
{v′ = v′}
(Bᵣ′ (BMΣ _) p _ F G D [F] [G])
(t₁ , t₂ , t⇒t′ , ⊢t₁ , v₂ , t₂®v₂ , extra) v⇒v′ =
let [Gt₁] = [G] ⊢t₁
in t₁ , t₂ , t⇒t′ , ⊢t₁
, Σ-®-elim
(λ _ → ∃ λ v₂ → (t₂ ® v₂ ∷ G U.[ t₁ ]₀ / [Gt₁])
× Σ-® F _ t₁ v′ v₂ p)
extra
(λ v⇒v₂ p≡𝟘 → case red*Det v⇒v₂ (trans v⇒v′ refl) of λ where
(inj₁ v₂⇒v′) → v′ , targetRedSubstTerm*′ [Gt₁] t₂®v₂ v₂⇒v′
, Σ-®-intro-𝟘 refl p≡𝟘
(inj₂ v′⇒v₂) → v₂ , t₂®v₂ , Σ-®-intro-𝟘 v′⇒v₂ p≡𝟘)
λ v₁ v⇒p t₁®v₁ p≢𝟘 → v₂ , t₂®v₂ , (case red*Det v⇒p (trans v⇒v′ refl) of λ where
(inj₁ p⇒v′) → case prod-noRed p⇒v′ of λ where
PE.refl → Σ-®-intro-ω v₁ refl t₁®v₁ p≢𝟘
(inj₂ v′⇒p) → Σ-®-intro-ω v₁ v′⇒p t₁®v₁ p≢𝟘)
targetRedSubstTerm′ (Idᵣ _) (rflᵣ t⇒*rfl v⇒*↯) v⇒v′ =
rflᵣ t⇒*rfl (⇒*↯→⇒→⇒*↯ v⇒*↯ v⇒v′)
targetRedSubstTerm′ (ne record{}) ()
targetRedSubstTerm′ (Emptyᵣ _) ()
targetRedSubstTerm*′ [A] t®v refl = t®v
targetRedSubstTerm*′ [A] t®v (trans x v⇒v′) =
targetRedSubstTerm*′ [A] (targetRedSubstTerm′ [A] t®v x) v⇒v′
opaque
redSubstTerm′ :
([A] : Δ ⊨ A) →
t ® v ∷ A / [A] →
t ⇛ t′ ∷ A →
v T.⇒ v′ →
t′ ® v′ ∷ A / [A]
redSubstTerm′ [A] t®v t⇒t′ v⇒v′ =
targetRedSubstTerm′ [A] (sourceRedSubstTerm′ [A] t®v t⇒t′) v⇒v′
opaque
redSubstTerm*′ :
([A] : Δ ⊨ A) →
t ® v ∷ A / [A] →
t ⇛ t′ ∷ A →
v T.⇒* v′ →
t′ ® v′ ∷ A / [A]
redSubstTerm*′ [A] t®v t⇒t′ v⇒v′ =
targetRedSubstTerm*′ [A] (sourceRedSubstTerm′ [A] t®v t⇒t′) v⇒v′