open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Reduction
{a} {M : Set a}
{𝕄 : Modality M}
{R : Type-restrictions 𝕄}
(as : Assumptions R)
where
open Assumptions as
open Modality 𝕄
open Type-restrictions R
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Properties.Escape R
import Definition.LogicalRelation.Fundamental R as F
import Definition.LogicalRelation.Irrelevance R as I
import Definition.LogicalRelation.Properties.Reduction R as R
open import Definition.LogicalRelation.Weakening.Restricted R
open import Definition.Untyped M as U
open import Definition.Untyped.Neutral M type-variant
open import Definition.Typed R
open import Definition.Typed.Properties R
open import Definition.Untyped.Properties M as UP using (wk-id ; wk-lift-id)
open import Graded.Erasure.Extraction.Properties 𝕄
open import Graded.Erasure.LogicalRelation as
open import Graded.Erasure.Target as T hiding (_⇒_; _⇒*_)
open import Graded.Erasure.Target.Properties as TP
open import Graded.Erasure.Target.Reasoning
open import Tools.Function
open import Tools.Nat
open import Tools.Product as Σ
import Tools.PropositionalEquality as PE
open import Tools.Relation
open import Tools.Sum using (inj₁; inj₂)
private
variable
n : Nat
t t′ A : U.Term n
v v′ : T.Term n
Γ : U.Con U.Term n
sourceRedSubstTerm : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t′ ®⟨ l ⟩ v ∷ A / [A]
→ t ⇛ t′ ∷ A → t ®⟨ l ⟩ v ∷ A / [A]
sourceRedSubstTerm (Uᵣ _) (Uᵣ ⇒*↯) _ =
Uᵣ ⇒*↯
sourceRedSubstTerm (ℕᵣ D) (zeroᵣ t′⇒zero v⇒v′) t⇒t′ =
zeroᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* D)) t′⇒zero) v⇒v′
sourceRedSubstTerm (ℕᵣ ⇒*ℕ) (sucᵣ t′⇒suc v⇒v′ num t®v) t⇒t′ =
sucᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* ⇒*ℕ)) t′⇒suc) v⇒v′ num t®v
sourceRedSubstTerm (Unitᵣ′ _ _ D _) (starᵣ t′⇒star v⇒star) t⇒t′ =
starᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* D)) t′⇒star) v⇒star
sourceRedSubstTerm (Bᵣ′ (BΠ p q) F G D A≡A [F] [G] G-ext _) t®v′ t⇒t′
with is-𝟘? p
... | yes PE.refl = t®v′ .proj₁ , λ {a = a} [a] →
let t®v = t®v′ .proj₂ [a]
⊢a = escapeTerm ([F] (id ⊢Δ)) [a]
⊢a′ = PE.subst (Δ ⊢ a ∷_) (UP.wk-id F) ⊢a
t∘a⇒t′∘w′ = app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a′
t∘a⇒t′∘w = PE.subst (_⇛_∷_ _ _)
(PE.cong (U._[ a ]₀) (PE.sym (UP.wk-lift-id G)))
t∘a⇒t′∘w′
in sourceRedSubstTerm ([G] (id ⊢Δ) [a]) t®v t∘a⇒t′∘w
... | no p≢𝟘 = t®v′ .proj₁ , λ {a = a} [a] a®w →
let t®v = t®v′ .proj₂ [a] a®w
⊢a = escapeTerm ([F] (id ⊢Δ)) [a]
⊢a′ = PE.subst (Δ ⊢ a ∷_) (UP.wk-id F) ⊢a
t∘a⇒t′∘w′ = app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a′
t∘a⇒t′∘w = PE.subst (_⇛_∷_ _ _)
(PE.cong (U._[ a ]₀) (PE.sym (UP.wk-lift-id G)))
t∘a⇒t′∘w′
in sourceRedSubstTerm ([G] (id ⊢Δ) [a]) t®v t∘a⇒t′∘w
sourceRedSubstTerm
(Bᵣ′ BΣ! F G D A≡A [F] [G] G-ext _)
(t₁ , t₂ , t′⇒p , [t₁] , v₂ , t₂®v₂ , extra) t⇒t′ =
t₁ , t₂ , trans-⇛ (conv-⇛ t⇒t′ (subset* D)) t′⇒p , [t₁] , v₂ , t₂®v₂ ,
extra
sourceRedSubstTerm (Idᵣ ⊩A) (rflᵣ t′⇒*rfl ⇒*↯) t⇒t′ =
rflᵣ (trans-⇛ (conv-⇛ t⇒t′ (subset* (_⊩ₗId_.⇒*Id ⊩A))) t′⇒*rfl) ⇒*↯
sourceRedSubstTerm (ne record{}) ()
sourceRedSubstTerm (Emptyᵣ _) ()
targetRedSubstTerm : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v′ ∷ A / [A]
→ v T.⇒ v′ → t ®⟨ l ⟩ v ∷ A / [A]
targetRedSubstTerm (Uᵣ _) (Uᵣ ⇒*↯) v⇒v′ = Uᵣ (T.trans v⇒v′ ∘→ ⇒*↯)
targetRedSubstTerm (ℕᵣ x) (zeroᵣ t′⇒zero v′⇒zero) v⇒v′ = zeroᵣ t′⇒zero (trans v⇒v′ v′⇒zero)
targetRedSubstTerm (ℕᵣ _) (sucᵣ t′⇒suc v′⇒suc num t®v) v⇒v′ =
sucᵣ t′⇒suc (trans v⇒v′ v′⇒suc) num t®v
targetRedSubstTerm (Unitᵣ x) (starᵣ x₁ v′⇒star) v⇒v′ = starᵣ x₁ (trans v⇒v′ v′⇒star)
targetRedSubstTerm
(Bᵣ′ (BΠ p q) F G D A≡A [F] [G] G-ext _) (v′⇒*lam , t®v′) v⇒v′
with is-𝟘? p | Σ.map idᶠ (T.trans v⇒v′) ∘→ v′⇒*lam
... | yes PE.refl | v⇒*lam = v⇒*lam , λ {a = a} [a] →
let t®v = t®v′ [a]
[G[a]] = [G] (id ⊢Δ) [a]
in targetRedSubstTerm [G[a]] t®v (app-𝟘′-subst v⇒v′)
... | no p≢𝟘 | v⇒*lam = v⇒*lam , λ {a = a} [a] a®w →
let t®v = t®v′ [a] a®w
v∘w⇒v′∘w′ = T.app-subst v⇒v′
[G[a]] = [G] (id ⊢Δ) [a]
in targetRedSubstTerm [G[a]] t®v v∘w⇒v′∘w′
targetRedSubstTerm {A = A} {t = t} {v = v}
[Σ]@(Bᵣ′ (BΣ _ p _) F G D A≡A [F] [G] G-ext _)
(t₁ , t₂ , t⇒t′ , [t₁] , v₂ , t₂®v₂ , extra) v⇒v′ =
t₁ , t₂ , t⇒t′ , [t₁] , v₂ , t₂®v₂ , extra′
where
extra′ = Σ-®-elim (λ _ → Σ-® _ F ([F] (id ⊢Δ)) t₁ v v₂ p) extra
(λ v′⇒v₂ → Σ-®-intro-𝟘 (trans v⇒v′ v′⇒v₂))
(λ v₁ v′⇒p t₁®v₁ → Σ-®-intro-ω v₁ (trans v⇒v′ v′⇒p) t₁®v₁)
targetRedSubstTerm (Idᵣ _) (rflᵣ t⇒*rfl ⇒*↯) v⇒v′ =
rflᵣ t⇒*rfl (T.trans v⇒v′ ∘→ ⇒*↯)
targetRedSubstTerm (ne record{}) ()
targetRedSubstTerm (Emptyᵣ _) ()
targetRedSubstTerm* : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v′ ∷ A / [A]
→ v T.⇒* v′ → t ®⟨ l ⟩ v ∷ A / [A]
targetRedSubstTerm* [A] t®v′ refl = t®v′
targetRedSubstTerm* [A] t®v′ (trans x v⇒v′) =
targetRedSubstTerm [A] (targetRedSubstTerm* [A] t®v′ v⇒v′) x
redSubstTerm : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t′ ®⟨ l ⟩ v′ ∷ A / [A]
→ t ⇛ t′ ∷ A → v T.⇒ v′ → t ®⟨ l ⟩ v ∷ A / [A]
redSubstTerm [A] t′®v′ t⇒t′ v⇒v′ =
targetRedSubstTerm [A] (sourceRedSubstTerm [A] t′®v′ t⇒t′) v⇒v′
redSubstTerm* : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t′ ®⟨ l ⟩ v′ ∷ A / [A]
→ t ⇛ t′ ∷ A → v T.⇒* v′ → t ®⟨ l ⟩ v ∷ A / [A]
redSubstTerm* [A] t′®v′ t⇒t′ v⇒v′ =
targetRedSubstTerm* [A] (sourceRedSubstTerm [A] t′®v′ t⇒t′) v⇒v′
sourceRedSubstTerm′ : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v ∷ A / [A]
→ t ⇛ t′ ∷ A → t′ ®⟨ l ⟩ v ∷ A / [A]
sourceRedSubstTerm′ (Uᵣ _) (Uᵣ ⇒*↯) _ =
Uᵣ ⇒*↯
sourceRedSubstTerm′ (ℕᵣ D) (zeroᵣ t⇒zero v⇒zero) t⇒t′
with whnf-⇛ t⇒zero zeroₙ (conv-⇛ t⇒t′ (subset* D))
... | t′⇒zero = zeroᵣ t′⇒zero v⇒zero
sourceRedSubstTerm′ (ℕᵣ D) (sucᵣ t⇒suc v⇒suc num t®v) t⇒t′
with whnf-⇛ t⇒suc sucₙ (conv-⇛ t⇒t′ (subset* D))
... | t′⇒suc = sucᵣ t′⇒suc v⇒suc num t®v
sourceRedSubstTerm′ (Unitᵣ′ _ _ x _) (starᵣ t⇒star v⇒star) t⇒t′
with whnf-⇛ t⇒star starₙ (conv-⇛ t⇒t′ (subset* x))
... | t′⇒star = starᵣ t′⇒star v⇒star
sourceRedSubstTerm′
(Bᵣ′ (BΠ p q) F G D A≡A [F] [G] G-ext _) t®v′ t⇒t′
with is-𝟘? p
... | yes PE.refl = t®v′ .proj₁ , λ {a = a} [a] →
let t®v = t®v′ .proj₂ [a]
⊢a = escapeTerm ([F] (id ⊢Δ)) [a]
⊢a′ = PE.subst (Δ ⊢ a ∷_) (UP.wk-id F) ⊢a
t∘a⇒t′∘a′ = app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a′
t∘a⇒t′∘a = PE.subst (_⇛_∷_ _ _)
(PE.cong (U._[ a ]₀) (PE.sym (UP.wk-lift-id G)))
t∘a⇒t′∘a′
in sourceRedSubstTerm′ ([G] (id ⊢Δ) [a]) t®v t∘a⇒t′∘a
... | no p≢𝟘 = t®v′ .proj₁ , λ {a = a} [a] a®w →
let t®v = t®v′ .proj₂ [a] a®w
⊢a = escapeTerm ([F] (id ⊢Δ)) [a]
⊢a′ = PE.subst (Δ ⊢ a ∷_) (UP.wk-id F) ⊢a
t∘a⇒t′∘a′ = app-⇛ (conv-⇛ t⇒t′ (subset* D)) ⊢a′
t∘a⇒t′∘a = PE.subst (_⇛_∷_ _ _)
(PE.cong (U._[ a ]₀) (PE.sym (UP.wk-lift-id G)))
t∘a⇒t′∘a′
in sourceRedSubstTerm′ ([G] (id ⊢Δ) [a]) t®v t∘a⇒t′∘a
sourceRedSubstTerm′
(Bᵣ′ BΣ! F G D A≡A [F] [G] G-ext _)
(t₁ , t₂ , t⇒p , [t₁] , v₂ , t₂®v₂ , extra) t⇒t′ =
t₁ , t₂
, whnf-⇛ t⇒p prodₙ (conv-⇛ t⇒t′ (subset* D))
, [t₁] , v₂ , t₂®v₂ , extra
sourceRedSubstTerm′ (Idᵣ ⊩A) (rflᵣ t⇒*rfl ⇒*↯) t⇒t′ =
rflᵣ (whnf-⇛ t⇒*rfl rflₙ (conv-⇛ t⇒t′ (subset* (_⊩ₗId_.⇒*Id ⊩A)))) ⇒*↯
sourceRedSubstTerm′ (ne record{}) ()
sourceRedSubstTerm′ (Emptyᵣ _) ()
private opaque
Π-lemma :
v T.⇒ v′ →
(∃ λ v″ → v T.⇒* T.lam v″) →
(∃ λ v″ → v′ T.⇒* T.lam v″)
Π-lemma v⇒v′ (_ , v⇒*lam)
with red*Det v⇒*lam (T.trans v⇒v′ T.refl)
… | inj₁ lam⇒*v′ rewrite Value→⇒*→≡ T.lam lam⇒*v′ = _ , T.refl
… | inj₂ v′⇒*lam = _ , v′⇒*lam
⇒*↯→⇒→⇒*↯ :
(str PE.≡ strict → v T.⇒* ↯) → v T.⇒ v′ →
str PE.≡ strict → v′ T.⇒* ↯
⇒*↯→⇒→⇒*↯ {v′} v⇒*↯ v⇒v′ ≡strict =
case red*Det (v⇒*↯ ≡strict) (T.trans v⇒v′ T.refl) of λ where
(inj₂ v′⇒*↯) → v′⇒*↯
(inj₁ ↯⇒*v′) →
v′ ≡⟨ ↯-noRed ↯⇒*v′ ⟩⇒
↯ ∎⇒
targetRedSubstTerm*′ :
∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v ∷ A / [A] →
v T.⇒* v′ → t ®⟨ l ⟩ v′ ∷ A / [A]
targetRedSubstTerm′ : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v ∷ A / [A]
→ v T.⇒ v′ → t ®⟨ l ⟩ v′ ∷ A / [A]
targetRedSubstTerm′ (Uᵣ _) (Uᵣ v⇒*↯) v⇒v′ =
Uᵣ (⇒*↯→⇒→⇒*↯ v⇒*↯ v⇒v′)
targetRedSubstTerm′ (ℕᵣ x) (zeroᵣ x₁ v⇒zero) v⇒v′ with red*Det v⇒zero (T.trans v⇒v′ T.refl)
... | inj₁ x₂ rewrite zero-noRed x₂ = zeroᵣ x₁ T.refl
... | inj₂ x₂ = zeroᵣ x₁ x₂
targetRedSubstTerm′ (ℕᵣ _) (sucᵣ t⇒suc v⇒suc num t®v) v⇒v′
with red*Det v⇒suc (T.trans v⇒v′ T.refl)
... | inj₁ suc⇒* rewrite suc-noRed suc⇒* = sucᵣ t⇒suc T.refl num t®v
... | inj₂ ⇒*suc = sucᵣ t⇒suc ⇒*suc num t®v
targetRedSubstTerm′ (Unitᵣ x) (starᵣ x₁ v⇒star) v⇒v′ with red*Det v⇒star (T.trans v⇒v′ T.refl)
... | inj₁ x₂ rewrite star-noRed x₂ = starᵣ x₁ T.refl
... | inj₂ x₂ = starᵣ x₁ x₂
targetRedSubstTerm′
(Bᵣ′ (BΠ p q) F G D A≡A [F] [G] G-ext _) t®v′ v⇒v′
with is-𝟘? p
... | yes PE.refl = Π-lemma v⇒v′ ∘→ t®v′ .proj₁ , λ [a] →
let t®v = t®v′ .proj₂ [a]
in targetRedSubstTerm′ ([G] (id ⊢Δ) [a]) t®v (app-𝟘′-subst v⇒v′)
... | no p≢𝟘 = Π-lemma v⇒v′ ∘→ t®v′ .proj₁ , λ [a] a®w →
let t®v = t®v′ .proj₂ [a] a®w
v∘w⇒v′∘w = T.app-subst v⇒v′
in targetRedSubstTerm′ ([G] (id ⊢Δ) [a]) t®v v∘w⇒v′∘w
targetRedSubstTerm′
{v′ = v′}
(Bᵣ′ (BΣ _ p _) F G D A≡A [F] [G] G-ext _)
(t₁ , t₂ , t⇒t′ , [t₁] , v₂ , t₂®v₂ , extra) v⇒v′ =
let [Gt₁] = [G] (id ⊢Δ) [t₁]
in t₁ , t₂ , t⇒t′ , [t₁]
, Σ-®-elim
(λ _ → ∃ λ v₂ → (t₂ ®⟨ _ ⟩ v₂ ∷ U.wk (lift id) G U.[ t₁ ]₀ / [Gt₁])
× Σ-® _ F _ t₁ v′ v₂ p)
extra
(λ v⇒v₂ p≡𝟘 → case red*Det v⇒v₂ (trans v⇒v′ refl) of λ where
(inj₁ v₂⇒v′) → v′ , targetRedSubstTerm*′ [Gt₁] t₂®v₂ v₂⇒v′
, Σ-®-intro-𝟘 refl p≡𝟘
(inj₂ v′⇒v₂) → v₂ , t₂®v₂ , Σ-®-intro-𝟘 v′⇒v₂ p≡𝟘)
λ v₁ v⇒p t₁®v₁ p≢𝟘 → v₂ , t₂®v₂ , (case red*Det v⇒p (trans v⇒v′ refl) of λ where
(inj₁ p⇒v′) → case prod-noRed p⇒v′ of λ where
PE.refl → Σ-®-intro-ω v₁ refl t₁®v₁ p≢𝟘
(inj₂ v′⇒p) → Σ-®-intro-ω v₁ v′⇒p t₁®v₁ p≢𝟘)
targetRedSubstTerm′ (Idᵣ _) (rflᵣ t⇒*rfl v⇒*↯) v⇒v′ =
rflᵣ t⇒*rfl (⇒*↯→⇒→⇒*↯ v⇒*↯ v⇒v′)
targetRedSubstTerm′ (ne record{}) ()
targetRedSubstTerm′ (Emptyᵣ _) ()
targetRedSubstTerm*′ [A] t®v refl = t®v
targetRedSubstTerm*′ [A] t®v (trans x v⇒v′) =
targetRedSubstTerm*′ [A] (targetRedSubstTerm′ [A] t®v x) v⇒v′
redSubstTerm′ : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v ∷ A / [A]
→ t ⇛ t′ ∷ A → v T.⇒ v′ → t′ ®⟨ l ⟩ v′ ∷ A / [A]
redSubstTerm′ [A] t®v t⇒t′ v⇒v′ =
targetRedSubstTerm′ [A] (sourceRedSubstTerm′ [A] t®v t⇒t′) v⇒v′
redSubstTerm*′ : ∀ {l} ([A] : Δ ⊩⟨ l ⟩ A) → t ®⟨ l ⟩ v ∷ A / [A]
→ t ⇛ t′ ∷ A → v T.⇒* v′ → t′ ®⟨ l ⟩ v′ ∷ A / [A]
redSubstTerm*′ [A] t®v t⇒t′ v⇒v′ =
targetRedSubstTerm*′ [A] (sourceRedSubstTerm′ [A] t®v t⇒t′) v⇒v′