open import Definition.Typed.Restrictions
open import Graded.Modality
module Definition.Conversion.Lift
{a} {M : Set a}
{𝕄 : Modality M}
(R : Type-restrictions 𝕄)
(open Type-restrictions R)
⦃ no-equality-reflection : No-equality-reflection ⦄
where
open import Definition.Untyped M
open import Definition.Untyped.Neutral M type-variant
open import Definition.Untyped.Properties M
open import Definition.Typed R
open import Definition.Typed.EqualityRelation.Instance R
open import Definition.Typed.Inversion R
open import Definition.Typed.Syntactic R
open import Definition.Typed.Weakening R
open import Definition.Typed.Properties R
open import Definition.Typed.EqRelInstance R
open import Definition.Conversion R
open import Definition.Conversion.Whnf R
open import Definition.Conversion.Soundness R
open import Definition.Conversion.Weakening R
open import Definition.LogicalRelation R
open import Definition.LogicalRelation.Properties R
open import Definition.LogicalRelation.Fundamental.Reducibility R
open import Definition.LogicalRelation.Weakening.Restricted R
open import Definition.Typed.Consequences.Reduction R
open import Tools.Fin
open import Tools.Function
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Sum using (inj₁; inj₂)
private
variable
n : Nat
Γ : Con Term n
liftConv : ∀ {A B}
→ Γ ⊢ A [conv↓] B
→ Γ ⊢ A [conv↑] B
liftConv A<>B =
let ⊢A , ⊢B = syntacticEq (soundnessConv↓ A<>B)
whnfA , whnfB = whnfConv↓ A<>B
in [↑] _ _ (id ⊢A , whnfA) (id ⊢B , whnfB) A<>B
liftConvTerm : ∀ {t u A}
→ Γ ⊢ t [conv↓] u ∷ A
→ Γ ⊢ t [conv↑] u ∷ A
liftConvTerm t<>u =
let ⊢A , ⊢t , ⊢u = syntacticEqTerm (soundnessConv↓Term t<>u)
whnfA , whnfT , whnfU = whnfConv↓Term t<>u
in [↑]ₜ _ _ _ (id ⊢A , whnfA) (id ⊢t , whnfT) (id ⊢u , whnfU) t<>u
mutual
lift~toConv↓′ : ∀ {t u A A′ l}
→ Γ ⊩⟨ l ⟩ A′
→ Γ ⊢ A′ ⇒* A
→ Γ ⊢ t ~ u ↓ A
→ Γ ⊢ t [conv↓] u ∷ A
lift~toConv↓′ (Uᵣ′ _ _ A′⇒*U) A′⇒*A ([~] _ (B⇒*A , A-whnf) t~u)
rewrite PE.sym (whrDet* (A′⇒*U , Uₙ) (A′⇒*A , A-whnf)) =
let _ , ⊢t , ⊢u =
syntacticEqTerm (conv (soundness~↑ t~u) (subset* B⇒*A))
in
univ ⊢t ⊢u (ne ([~] _ (B⇒*A , Uₙ) t~u))
lift~toConv↓′ (ℕᵣ D) D₁ ([~] A (D₂ , whnfB) k~l)
rewrite PE.sym (whrDet* (D , ℕₙ) (D₁ , whnfB)) =
ℕ-ins ([~] A (D₂ , ℕₙ) k~l)
lift~toConv↓′ (Emptyᵣ D) D₁ ([~] A (D₂ , whnfB) k~l)
rewrite PE.sym (whrDet* (D , Emptyₙ) (D₁ , whnfB)) =
Empty-ins ([~] A (D₂ , Emptyₙ) k~l)
lift~toConv↓′
(Unitᵣ {s} (Unitᵣ _ _ A′⇒*Unit _)) A′⇒*A
t~u↓@([~] _ (B⇒*A , A-whnf) t~u↑) =
case whrDet* (A′⇒*Unit , Unitₙ) (A′⇒*A , A-whnf) of λ {
PE.refl →
case Unit-with-η? s of λ where
(inj₂ (PE.refl , no-η)) → Unitʷ-ins no-η t~u↓
(inj₁ η) →
case ne~↑ t~u↑ of λ
(t-ne , u-ne) →
case syntacticEqTerm (soundness~↑ t~u↑) of λ
(_ , ⊢t , ⊢u) →
case subset* B⇒*A of λ
B≡Unit →
η-unit (conv ⊢t B≡Unit) (conv ⊢u B≡Unit) (ne t-ne) (ne u-ne) η }
lift~toConv↓′ (ne′ _ H D neH H≡H) D₁ ([~] A (D₂ , whnfB) k~l)
rewrite PE.sym (whrDet* (D , ne neH) (D₁ , whnfB)) =
let _ , ⊢t , ⊢u = syntacticEqTerm (soundness~↑ k~l)
A≡H = subset* D₂
in ne-ins (conv ⊢t A≡H) (conv ⊢u A≡H) neH ([~] A (D₂ , ne neH) k~l)
lift~toConv↓′
(Πᵣ′ F G D A≡A [F] [G] G-ext _) D₁ ([~] A (D₂ , whnfB) k~l)
rewrite PE.sym (whrDet* (D , ΠΣₙ) (D₁ , whnfB)) =
let ⊢ΠFG , ⊢t , ⊢u = syntacticEqTerm
(soundness~↓ ([~] A (D₂ , ΠΣₙ) k~l))
⊢F , ⊢G , _ = inversion-ΠΣ ⊢ΠFG
neT , neU = ne~↑ k~l
step-id = stepʷ id ⊢F
step-idʳ = ∷ʷ⊇→∷ʷʳ⊇ step-id
var0 = neuTerm no-equality-reflection ([F] step-idʳ) (var x0)
(refl (var₀ ⊢F))
0≡0 = lift~toConv↑′ ([F] step-idʳ) (var-refl (var₀ ⊢F) PE.refl)
in η-eq ⊢t ⊢u (ne neT) (ne neU)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wkSingleSubstId _) $
lift~toConv↑′ ([G] step-idʳ var0) $
app-cong (wk~↓ step-id ([~] A (D₂ , ΠΣₙ) k~l)) 0≡0)
lift~toConv↓′
(Bᵣ′ BΣˢ F G D Σ≡Σ [F] [G] G-ext _) D₁
([~] A″ (D₂ , whnfA) t~u)
rewrite
PE.sym (whrDet* (D , ΠΣₙ) (D₁ , whnfA)) =
let neT , neU = ne~↑ t~u
t~u↓ = [~] A″ (D₂ , ΠΣₙ) t~u
⊢ΣFG , ⊢t , ⊢u = syntacticEqTerm (soundness~↓ t~u↓)
⊢F , ⊢G , _ = inversion-ΠΣ ⊢ΣFG
⊢Γ = wf ⊢F
wkId = wk-id F
wkLiftId = PE.cong (λ x → x [ fst _ _ ]₀) (wk-lift-id G)
wk[F] = [F] (id ⊢Γ)
wkfst≡ = PE.subst (_⊢_≡_∷_ _ _ _) (PE.sym wkId)
(fst-cong ⊢G (refl ⊢t))
wk[fst] = neuTerm no-equality-reflection wk[F] (fstₙ neT) wkfst≡
wk[Gfst] = [G] (id ⊢Γ) wk[fst]
wkfst~ = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym wkId) (fst-cong t~u↓)
wksnd~ = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym wkLiftId) (snd-cong t~u↓)
in Σ-η ⊢t ⊢u (ne neT) (ne neU)
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) wkId
(lift~toConv↑′ wk[F] wkfst~))
(PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) wkLiftId
(lift~toConv↑′ wk[Gfst] wksnd~))
lift~toConv↓′
(Bᵣ′ BΣʷ F G D Σ≡Σ [F] [G] G-ext _) D₁
([~] A″ (D₂ , whnfA) t~u)
rewrite
PE.sym (whrDet* (D , ΠΣₙ) (D₁ , whnfA)) =
let t~u↓ = [~] A″ (D₂ , ΠΣₙ) t~u
_ , ⊢t , ⊢u = syntacticEqTerm (soundness~↓ t~u↓)
in Σʷ-ins ⊢t ⊢u t~u↓
lift~toConv↓′ (Idᵣ ⊩A′) A′⇒*A t~u@([~] _ (_ , A-whnf) _) =
case whrDet* (_⊩ₗId_.⇒*Id ⊩A′ , Idₙ) (A′⇒*A , A-whnf) of λ {
PE.refl →
case syntacticEqTerm (soundness~↓ t~u) .proj₂ .proj₁ of λ {
⊢t →
Id-ins ⊢t t~u }}
lift~toConv↑′ : ∀ {t u A l}
→ Γ ⊩⟨ l ⟩ A
→ Γ ⊢ t ~ u ↑ A
→ Γ ⊢ t [conv↑] u ∷ A
lift~toConv↑′ [A] t~u =
let B , whnfB , D = whNorm′ [A]
t~u↓ = [~] _ (D , whnfB) t~u
neT , neU = ne~↑ t~u
_ , ⊢t , ⊢u = syntacticEqTerm (soundness~↓ t~u↓)
in [↑]ₜ _ _ _ (D , whnfB) (id ⊢t , ne neT) (id ⊢u , ne neU)
(lift~toConv↓′ [A] D t~u↓)
lift~toConv↓ : ∀ {t u A}
→ Γ ⊢ t ~ u ↓ A
→ Γ ⊢ t [conv↓] u ∷ A
lift~toConv↓ ([~] A₁ D@(D′ , _) k~l) =
lift~toConv↓′
(reducible-⊩ (syntacticRed D′ .proj₁) .proj₂) D′
([~] A₁ D k~l)
lift~toConv↑ : ∀ {t u A}
→ Γ ⊢ t ~ u ↑ A
→ Γ ⊢ t [conv↑] u ∷ A
lift~toConv↑ t~u =
lift~toConv↑′
(reducible-⊩ (syntacticEqTerm (soundness~↑ t~u) .proj₁) .proj₂)
t~u