------------------------------------------------------------------------
-- Validity for the identity type
------------------------------------------------------------------------

open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality

module Graded.Erasure.LogicalRelation.Fundamental.Identity
  {a} {M : Set a}
  {𝕄 : Modality M}
  (open Modality 𝕄)
  {R : Type-restrictions 𝕄}
  (as : Assumptions R)
   𝟘-well-behaved : Has-well-behaved-zero M semiring-with-meet 
  where

open Assumptions as
open Has-well-behaved-zero 𝟘-well-behaved
open Type-restrictions R

open import Definition.Typed R
open import Definition.Typed.Consequences.Canonicity R
open import Definition.Typed.Consequences.Inversion R
open import Definition.Typed.Properties R
open import Definition.Typed.Substitution R
open import Definition.Typed.Syntactic R

open import Definition.LogicalRelation.Fundamental R
open import
  Definition.LogicalRelation.Fundamental.Reducibility.Restricted R
open import Definition.LogicalRelation.Hidden R
import Definition.LogicalRelation.Hidden.Restricted R as R
open import Definition.LogicalRelation.Substitution R
import Definition.LogicalRelation.Substitution.Introductions.Erased R
  as IE
open import Definition.LogicalRelation.Substitution.Introductions R

open import Definition.Untyped M
import Definition.Untyped.Erased 𝕄 as Erased
open import Definition.Untyped.Properties M

open import Graded.Context 𝕄
open import Graded.Context.Properties.Has-well-behaved-zero 𝕄
open import Graded.Erasure.Extraction 𝕄
open import Graded.Erasure.LogicalRelation as
open import Graded.Erasure.LogicalRelation.Assumptions.Reasoning
  is-reduction-relation
open import Graded.Erasure.LogicalRelation.Hidden as
import Graded.Erasure.Target as T
open import Graded.Mode 𝕄

open import Tools.Fin
open import Tools.Function
open import Tools.Product
open import Tools.PropositionalEquality as PE using (_≡_)
open import Tools.Sum using (_⊎_; inj₁; inj₂)

private variable
  Γ           : Con Term _
  γ δ         : Conₘ _
  A B t u v w : Term _
  m           : Mode
  p q         : M
  s           : Strength
  l           : Universe-level

opaque

  -- Validity of Id.

  Idʳ : γ  Γ ⊩ʳ Id A t u ∷[ m ] U l
  Idʳ =
    ▸⊩ʳ∷⇔ .proj₂ λ _ _ 
    ®∷→®∷◂ (®∷U⇔ .proj₂ (_ , ≤ᵘ-refl , Uᵣ  { PE.refl  T.refl })))

opaque

  -- Validity of rfl.

  rflʳ :
    Γ  t  A 
    γ  Γ ⊩ʳ rfl ∷[ m ] Id A t t
  rflʳ ⊢t =
    case fundamental-⊩ᵛ∷ ⊢t of λ
      (_ , ⊩t) 
    ▸⊩ʳ∷⇔ .proj₂ λ ⊩σ _ 
    ®∷→®∷◂ $
    ®∷Id⇔ .proj₂
      ( R.escape-⊩ (⊩ᵛ→⊩ˢ∷→⊩[] (wf-⊩ᵛ∷ ⊩t) ⊩σ)
      , rflᵣ
          (rfl  ∎⟨ rflⱼ (R.escape-⊩∷ (⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩t ⊩σ)) ⟩⇛)
           { PE.refl  T.refl })
      )

opaque

  -- Validity of []-cong for empty "target contexts".

  []-congʳ :
    Empty-con Δ 
    Γ  v  Id A t u 
    []-cong-allowed s 
    let open Erased s in
    γ  Γ ⊩ʳ []-cong s A t u v ∷[ m ] Id (Erased A) [ t ] ([ u ])
  []-congʳ {v} {A} {t} {u} ε ⊢v ok =
    case fundamental-⊩ᵛ∷ ⊢v of λ
      (_ , ⊩v) 
    case ⊩ᵛId⇔ .proj₁ (wf-⊩ᵛ∷ ⊩v) of λ
      (⊩t , _) 
    ▸⊩ʳ∷⇔ .proj₂ λ {σ = σ} ⊩σ _ 
    ®∷→®∷◂ $
    ®∷Id⇔ .proj₂
      ( R.escape-⊩ (⊩ᵛ→⊩ˢ∷→⊩[] (Erasedᵛ (wf-⊩ᵛ∷ ⊩t)) ⊩σ)
      , rflᵣ
          (([]-cong _ A t u v) [ σ ]  ⇒*⟨ ε⊢⇒*rfl∷Id $ []-congⱼ′ ok $ R.escape-⊩∷ $
                                          ⊩ᵛ∷→⊩ˢ∷→⊩[]∷ ⊩v ⊩σ ⟩∎⇛
           rfl                        )
           { PE.refl  T.refl })
      )
    where
    open IE ([]-cong→Erased ok)

opaque

  -- Validity of K.

   :
    Γ  Id A t t  B 
    Γ  u  B [ rfl ]₀ 
    Γ  v  Id A t t 
    K-allowed 
    γ ≤ᶜ δ 
    δ  Γ ⊩ʳ u ∷[ m ] B [ rfl ]₀ 
    Empty-con Δ  ( λ η  γ ≤ᶜ η × η  Γ ⊩ʳ v ∷[ m ] Id A t t) 
    γ  Γ ⊩ʳ K p A t B u v ∷[ m ] B [ v ]₀
   {m = 𝟘ᵐ} _ _ _ _ _ _ _ =
    ▸⊩ʳ∷[𝟘ᵐ]
  
    {Γ} {A} {t} {B} {u} {v} {γ} {δ} {m = 𝟙ᵐ} {p}
    ⊢B ⊢u ⊢v ok γ≤δ ⊩ʳu ε⊎⊩ʳv =
    ▸⊩ʳ∷⇔ .proj₂ λ {σ = σ} {σ′ = σ′} ⊩σ σ®σ′ 
    case escape-⊩ˢ∷ ⊩σ of λ
      (_ , ⊢σ) 
    case fundamental-⊩ᵛ ⊢B of λ
      (_ , ⊩B) 
    case subst-⊢-⇑ ⊢B ⊢σ of λ
      ⊢B[σ⇑] 
    case PE.subst (_⊢_∷_ _ _) (singleSubstLift B _) $
         subst-⊢∷ ⊢u ⊢σ of λ
      ⊢u[σ] 
    case R.⊩∷→ $ ⊩ᵛ∷→⊩ˢ∷→⊩[]∷ (fundamental-⊩ᵛ∷ ⊢v .proj₂) ⊩σ of λ
      ⊩v[σ] 
    case
      (case ε⊎⊩ʳv of λ where
         (inj₁ ε)                              $⟨ escape-⊩∷ ⊩v[σ] 
           ε  v [ σ ]  Id A t t [ σ ]         →⟨ ε⊢⇒*rfl∷Id 
           ε  v [ σ ] ⇒* rfl  Id A t t [ σ ]  →⟨ ⇒*→⇛ 
           v [ σ ]  rfl  Id A t t [ σ ]       
         (inj₂ (η , γ≤η , ⊩ʳv))                                $⟨ σ®σ′ 

           σ ® σ′ ∷[ 𝟙ᵐ ] Γ  γ                                 →⟨ subsumption-®∷[]◂  _  ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤η) 

           σ ® σ′ ∷[ 𝟙ᵐ ] Γ  η                                 →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳv ⊩σ 

           v [ σ ] ® erase str v T.[ σ′ ]  Id A t t [ σ ]  𝟙  →⟨ proj₂ ∘→ ®∷Id⇔ .proj₁ ∘→ ®∷→®∷◂ω non-trivial 

           v [ σ ] ® erase str v T.[ σ′ ]
             ∷Id⟨ A [ σ ] ⟩⟨ t [ σ ] ⟩⟨ t [ σ ]                →⟨  { (rflᵣ v[σ]⇛rfl _)  v[σ]⇛rfl }) 

           v [ σ ]  rfl  Id A t t [ σ ]                       )
    of λ
      v[σ]⇛rfl 
    case                   B [ v ]₀ [ σ ]            singleSubstLift B _ ⟩⇛≡
      K p A t B u v [ σ ]  B [ σ  ] [ v [ σ ] ]₀  ⇛⟨ K-⇛ ⊢B[σ⇑] ⊢u[σ] v[σ]⇛rfl ok ⟩∷
                                                      substTypeEq (refl ⊢B[σ⇑]) (⇛→⊢≡ v[σ]⇛rfl) ⟩⇛
      K p A t B u rfl [ σ ]  B [ σ  ] [ rfl ]₀    ⇒⟨ K-β ⊢B[σ⇑] ⊢u[σ] ok ⟩∎⇛∷
      u [ σ ]                                       
    of λ
      K⇛u[σ]                                                        $⟨ σ®σ′ 
    σ ® σ′ ∷[ 𝟙ᵐ ] Γ  γ                                             →⟨ subsumption-®∷[]◂  _  ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤δ) 
    σ ® σ′ ∷[ 𝟙ᵐ ] Γ  δ                                             →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳu ⊩σ 
    u [ σ ] ® erase str u T.[ σ′ ]  B [ rfl ]₀ [ σ ]  𝟙            →⟨ conv-®∷◂ $ R.⊩≡→ $
                                                                        ⊩ᵛ≡→⊩≡∷→⊩ˢ≡∷→⊩[]₀[]≡[]₀[] (refl-⊩ᵛ≡ ⊩B)
                                                                          (reducible-⊩≡∷ (sym′ (⇛→⊢≡ v[σ]⇛rfl)) .proj₂)
                                                                          (refl-⊩ˢ≡∷ ⊩σ) 
    u [ σ ] ® erase str u T.[ σ′ ]  B [ v ]₀ [ σ ]  𝟙              →⟨ ®∷◂-⇐* K⇛u[σ] T.refl 
    K p A t B u v [ σ ] ® erase str u T.[ σ′ ]  B [ v ]₀ [ σ ]  𝟙  

opaque

  -- Validity of J.

   :
    Γ  A  Id (wk1 A) (wk1 t) (var x0)  B 
    Γ  u  B [ t , rfl ]₁₀ 
    Γ  w  Id A t v 
    γ ≤ᶜ δ 
    δ  Γ ⊩ʳ u ∷[ m ] B [ t , rfl ]₁₀ 
    Empty-con Δ  ( λ η  γ ≤ᶜ η × η  Γ ⊩ʳ w ∷[ m ] Id A t v) 
    γ  Γ ⊩ʳ J p q A t B u v w ∷[ m ] B [ v , w ]₁₀
   {m = 𝟘ᵐ} _ _ _ _ _ _ =
    ▸⊩ʳ∷[𝟘ᵐ]
  
    {Γ} {A} {t} {B} {u} {w} {v} {γ} {δ} {m = 𝟙ᵐ} {p} {q}
    ⊢B ⊢u ⊢w γ≤δ ⊩ʳu ε⊎⊩ʳw =
    ▸⊩ʳ∷⇔ .proj₂ λ {σ = σ} {σ′ = σ′} ⊩σ σ®σ′ 
    case escape-⊩ˢ∷ ⊩σ of λ
      (_ , ⊢σ) 
    case fundamental-⊩ᵛ ⊢B of λ
      (_ , ⊩B) 
    case PE.subst₂ _⊢_ (PE.cong (_∙_ _) (Id-wk1-wk1-0[⇑]≡ A t))
           PE.refl $
         subst-⊢-⇑ ⊢B ⊢σ of λ
      ⊢B[σ⇑⇑] 
    case PE.subst (_⊢_∷_ _ _) ([,]-[]-commute B) $
         subst-⊢∷ ⊢u ⊢σ of λ
      ⊢u[σ] 
    case R.⊩∷→ $ ⊩ᵛ∷→⊩ˢ∷→⊩[]∷ (fundamental-⊩ᵛ∷ ⊢w .proj₂) ⊩σ of λ
      ⊩w[σ] 
    case
      (case ε⊎⊩ʳw of λ where
         (inj₁ ε)                              $⟨ escape-⊩∷ ⊩w[σ] 
           ε  w [ σ ]  Id A t v [ σ ]         →⟨ ε⊢⇒*rfl∷Id 
           ε  w [ σ ] ⇒* rfl  Id A t v [ σ ]  →⟨ ⇒*→⇛ 
           w [ σ ]  rfl  Id A t v [ σ ]       
         (inj₂ (η , γ≤η , ⊩ʳw))                                $⟨ σ®σ′ 

           σ ® σ′ ∷[ 𝟙ᵐ ] Γ  γ                                 →⟨ subsumption-®∷[]◂  _  ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤η) 

           σ ® σ′ ∷[ 𝟙ᵐ ] Γ  η                                 →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳw ⊩σ 

           w [ σ ] ® erase str w T.[ σ′ ]  Id A t v [ σ ]  𝟙  →⟨ proj₂ ∘→ ®∷Id⇔ .proj₁ ∘→ ®∷→®∷◂ω non-trivial 

           w [ σ ] ® erase str w T.[ σ′ ]
             ∷Id⟨ A [ σ ] ⟩⟨ t [ σ ] ⟩⟨ v [ σ ]                →⟨  { (rflᵣ w[σ]⇛rfl _)  w[σ]⇛rfl }) 

           w [ σ ]  rfl  Id A t v [ σ ]                       )
    of λ
      w[σ]⇛rfl 
    case inversion-rfl-Id (wf-⇛ w[σ]⇛rfl .proj₂) of λ
      t[σ]≡v[σ] 
    case                       B [ v , w ]₁₀ [ σ ]                    [,]-[]-commute B ⟩⇛≡
      J p q A t B u v w [ σ ]  B [ σ   ] [ v [ σ ] , w [ σ ] ]₁₀  ⇛⟨ J-⇛ ⊢B[σ⇑⇑] ⊢u[σ] w[σ]⇛rfl ⟩∷
                                                                       substTypeEq₂ (refl ⊢B[σ⇑⇑]) (sym′ t[σ]≡v[σ]) $
                                                                        PE.subst (_⊢_≡_∷_ _ _ _) ≡Id-wk1-wk1-0[]₀ $
                                                                        ⇛→⊢≡ w[σ]⇛rfl ⟩⇛
      J p q A t B u v rfl [ σ ]  B [ σ   ] [ t [ σ ] , rfl ]₁₀    ⇒⟨ J-β-⇒ t[σ]≡v[σ] ⊢B[σ⇑⇑] ⊢u[σ] ⟩∎⇛∷
      u [ σ ]                                                        
    of λ
      J⇛u[σ]                                                   $⟨ σ®σ′ 

    σ ® σ′ ∷[ 𝟙ᵐ ] Γ  γ                                        →⟨ subsumption-®∷[]◂  _  ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤δ) 

    σ ® σ′ ∷[ 𝟙ᵐ ] Γ  δ                                        →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳu ⊩σ 

    u [ σ ] ® erase str u T.[ σ′ ]  B [ t , rfl ]₁₀ [ σ ]  𝟙  →⟨ conv-®∷◂ $
                                                                   sym-⊩≡ $ R.⊩≡→ $
                                                                   ⊩ᵛ≡→⊩≡∷→⊩≡∷→⊩ˢ≡∷→⊩[]₁₀[]≡[]₁₀[] (refl-⊩ᵛ≡ ⊩B)
                                                                     (R.sym-⊩≡∷ $ reducible-⊩≡∷ t[σ]≡v[σ] .proj₂)
                                                                     (PE.subst (R._⊩⟨_⟩_≡_∷_ _ _ _ _)
                                                                        (PE.cong₂ _[_] (≡Id-wk1-wk1-0[]₀ {A = A} {t = t}) PE.refl) $
                                                                      reducible-⊩≡∷ (⇛→⊢≡ w[σ]⇛rfl) .proj₂)
                                                                     (refl-⊩ˢ≡∷ ⊩σ) 

    u [ σ ] ® erase str u T.[ σ′ ]  B [ v , w ]₁₀ [ σ ]  𝟙    →⟨ ®∷◂-⇐* J⇛u[σ] T.refl 

    J p q A t B u v w [ σ ] ® erase str u T.[ σ′ ] 
      B [ v , w ]₁₀ [ σ ]  𝟙