open import Definition.Typed.Restrictions
open import Graded.Erasure.LogicalRelation.Assumptions
open import Graded.Modality
module Graded.Erasure.LogicalRelation.Fundamental.Identity
{a} {M : Set a}
{𝕄 : Modality M}
(open Modality 𝕄)
{R : Type-restrictions 𝕄}
(as : Assumptions R)
⦃ 𝟘-well-behaved : Has-well-behaved-zero M semiring-with-meet ⦄
where
open Assumptions as
open Has-well-behaved-zero 𝟘-well-behaved
open Type-restrictions R
open import Definition.Typed R
open import Definition.Typed.Consequences.Canonicity R
open import Definition.Typed.Consequences.Inversion R
open import Definition.Typed.Inversion R
open import Definition.Typed.Properties R
open import Definition.Typed.Substitution R
open import Definition.Typed.Syntactic R
open import Definition.Untyped M
import Definition.Untyped.Erased 𝕄 as Erased
open import Definition.Untyped.Properties M
open import Graded.Context 𝕄
open import Graded.Context.Properties.Has-well-behaved-zero 𝕄
open import Graded.Erasure.Extraction 𝕄
open import Graded.Erasure.LogicalRelation as
open import Graded.Erasure.LogicalRelation.Assumptions.Reasoning
is-reduction-relation
open import Graded.Erasure.LogicalRelation.Hidden as
import Graded.Erasure.Target as T
open import Graded.Mode 𝕄
open import Tools.Fin
open import Tools.Function
open import Tools.Product
open import Tools.PropositionalEquality as PE using (_≡_)
open import Tools.Sum using (_⊎_; inj₁; inj₂)
private variable
Γ : Con Term _
γ δ : Conₘ _
A B t u v w : Term _
m : Mode
p q : M
s : Strength
l : Universe-level
opaque
Idʳ : γ ▸ Γ ⊩ʳ Id A t u ∷[ m ] U l
Idʳ =
▸⊩ʳ∷⇔ .proj₂ λ _ _ →
®∷→®∷◂ (®∷U⇔ .proj₂ (Uᵣ (λ { PE.refl → T.refl })))
opaque
rflʳ :
Γ ⊢ t ∷ A →
γ ▸ Γ ⊩ʳ rfl ∷[ m ] Id A t t
rflʳ ⊢t =
▸⊩ʳ∷⇔ .proj₂ λ ⊢σ _ →
let ⊢σt = subst-⊢∷ ⊢t ⊢σ in
®∷→®∷◂ $
®∷Id⇔ .proj₂
(syntacticTerm ⊢σt
, rflᵣ
(rfl ∎⟨ rflⱼ ⊢σt ⟩⇛)
(λ { PE.refl → T.refl }))
opaque
[]-congʳ :
Empty-con Δ →
Γ ⊢ v ∷ Id A t u →
[]-cong-allowed s →
let open Erased s in
γ ▸ Γ ⊩ʳ []-cong s A t u v ∷[ m ] Id (Erased A) [ t ] ([ u ])
[]-congʳ {v} {A} {t} {u} ε ⊢v ok =
▸⊩ʳ∷⇔ .proj₂ λ {σ = σ} ⊢σ _ →
let ⊢σv = subst-⊢∷ ⊢v ⊢σ
⊢σA , _ = inversion-Id (syntacticTerm ⊢σv)
in
®∷→®∷◂ $
®∷Id⇔ .proj₂
( Erasedⱼ ([]-cong→Erased ok) ⊢σA
, rflᵣ
(([]-cong _ A t u v) [ σ ] ⇒*⟨ ε⊢⇒*rfl∷Id $ []-congⱼ′ ok ⊢σv ⟩∎⇛
rfl ∎)
(λ { PE.refl → T.refl })
)
opaque
Kʳ :
Γ ∙ Id A t t ⊢ B →
Γ ⊢ u ∷ B [ rfl ]₀ →
Γ ⊢ v ∷ Id A t t →
K-allowed →
γ ≤ᶜ δ →
δ ▸ Γ ⊩ʳ u ∷[ m ] B [ rfl ]₀ →
Empty-con Δ ⊎ (∃ λ η → γ ≤ᶜ η × η ▸ Γ ⊩ʳ v ∷[ m ] Id A t t) →
γ ▸ Γ ⊩ʳ K p A t B u v ∷[ m ] B [ v ]₀
Kʳ {m = 𝟘ᵐ} _ _ _ _ _ _ _ =
▸⊩ʳ∷[𝟘ᵐ]
Kʳ
{Γ} {A} {t} {B} {u} {v} {γ} {δ} {m = 𝟙ᵐ} {p}
⊢B ⊢u ⊢v ok γ≤δ ⊩ʳu ε⊎⊩ʳv =
▸⊩ʳ∷⇔ .proj₂ λ {σ = σ} {σ′ = σ′} ⊢σ σ®σ′ →
case subst-⊢∷ ⊢v ⊢σ of λ
⊢v[σ] →
case subst-⊢-⇑ ⊢B ⊢σ of λ
⊢B[σ⇑] →
case PE.subst (_⊢_∷_ _ _) (singleSubstLift B _) $
subst-⊢∷ ⊢u ⊢σ of λ
⊢u[σ] →
case
(case ε⊎⊩ʳv of λ where
(inj₁ ε) → $⟨ ⊢v[σ] ⟩
ε ⊢ v [ σ ] ∷ Id A t t [ σ ] →⟨ ε⊢⇒*rfl∷Id ⟩
ε ⊢ v [ σ ] ⇒* rfl ∷ Id A t t [ σ ] →⟨ ⇒*→⇛ ⟩
v [ σ ] ⇛ rfl ∷ Id A t t [ σ ] □
(inj₂ (η , γ≤η , ⊩ʳv)) → $⟨ σ®σ′ ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ γ →⟨ subsumption-®∷[]◂ (λ _ → ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤η) ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ η →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳv ⊢σ ⟩
v [ σ ] ® erase str v T.[ σ′ ] ∷ Id A t t [ σ ] ◂ 𝟙 →⟨ proj₂ ∘→ ®∷Id⇔ .proj₁ ∘→ ®∷→®∷◂ω non-trivial ⟩
v [ σ ] ® erase str v T.[ σ′ ]
∷Id⟨ A [ σ ] ⟩⟨ t [ σ ] ⟩⟨ t [ σ ] ⟩ →⟨ (λ { (rflᵣ v[σ]⇛rfl _) → v[σ]⇛rfl }) ⟩
v [ σ ] ⇛ rfl ∷ Id A t t [ σ ] □)
of λ
v[σ]⇛rfl →
case PE.subst₂ (_⊢_≡_ _) (PE.sym (singleSubstLift B _)) (PE.sym (singleSubstLift B _)) $
substTypeEq (refl ⊢B[σ⇑]) (sym′ (⇛→⊢≡ v[σ]⇛rfl)) of λ
⊢B[rfl]≡B[v] →
case ∷ B [ v ]₀ [ σ ] ⟨ singleSubstLift B _ ⟩⇛≡
K p A t B u v [ σ ] ∷ B [ σ ⇑ ] [ v [ σ ] ]₀ ⇛⟨ K-⇛ ⊢B[σ⇑] ⊢u[σ] v[σ]⇛rfl ok ⟩∷
⟨ substTypeEq (refl ⊢B[σ⇑]) (⇛→⊢≡ v[σ]⇛rfl) ⟩⇛
K p A t B u rfl [ σ ] ∷ B [ σ ⇑ ] [ rfl ]₀ ⇒⟨ K-β ⊢B[σ⇑] ⊢u[σ] ok ⟩∎⇛∷
u [ σ ] ∎
of λ
K⇛u[σ] → $⟨ σ®σ′ ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ γ →⟨ subsumption-®∷[]◂ (λ _ → ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤δ) ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ δ →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳu ⊢σ ⟩
u [ σ ] ® erase str u T.[ σ′ ] ∷ B [ rfl ]₀ [ σ ] ◂ 𝟙 →⟨ conv-®∷◂ ⊢B[rfl]≡B[v] ⟩
u [ σ ] ® erase str u T.[ σ′ ] ∷ B [ v ]₀ [ σ ] ◂ 𝟙 →⟨ ®∷◂-⇐* K⇛u[σ] T.refl ⟩
K p A t B u v [ σ ] ® erase str u T.[ σ′ ] ∷ B [ v ]₀ [ σ ] ◂ 𝟙 □
opaque
Jʳ :
Γ ∙ A ∙ Id (wk1 A) (wk1 t) (var x0) ⊢ B →
Γ ⊢ u ∷ B [ t , rfl ]₁₀ →
Γ ⊢ w ∷ Id A t v →
γ ≤ᶜ δ →
δ ▸ Γ ⊩ʳ u ∷[ m ] B [ t , rfl ]₁₀ →
Empty-con Δ ⊎ (∃ λ η → γ ≤ᶜ η × η ▸ Γ ⊩ʳ w ∷[ m ] Id A t v) →
γ ▸ Γ ⊩ʳ J p q A t B u v w ∷[ m ] B [ v , w ]₁₀
Jʳ {m = 𝟘ᵐ} _ _ _ _ _ _ =
▸⊩ʳ∷[𝟘ᵐ]
Jʳ
{Γ} {A} {t} {B} {u} {w} {v} {γ} {δ} {m = 𝟙ᵐ} {p} {q}
⊢B ⊢u ⊢w γ≤δ ⊩ʳu ε⊎⊩ʳw =
▸⊩ʳ∷⇔ .proj₂ λ {σ = σ} {σ′ = σ′} ⊢σ σ®σ′ →
case PE.subst₂ _⊢_ (PE.cong (_∙_ _) (Id-wk1-wk1-0[⇑]≡ A t))
PE.refl $
subst-⊢-⇑ ⊢B ⊢σ of λ
⊢B[σ⇑⇑] →
case PE.subst (_⊢_∷_ _ _) ([,]-[]-commute B) $
subst-⊢∷ ⊢u ⊢σ of λ
⊢u[σ] →
case subst-⊢∷ ⊢w ⊢σ of λ
⊢w[σ] →
case
(case ε⊎⊩ʳw of λ where
(inj₁ ε) → $⟨ ⊢w[σ] ⟩
ε ⊢ w [ σ ] ∷ Id A t v [ σ ] →⟨ ε⊢⇒*rfl∷Id ⟩
ε ⊢ w [ σ ] ⇒* rfl ∷ Id A t v [ σ ] →⟨ ⇒*→⇛ ⟩
w [ σ ] ⇛ rfl ∷ Id A t v [ σ ] □
(inj₂ (η , γ≤η , ⊩ʳw)) → $⟨ σ®σ′ ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ γ →⟨ subsumption-®∷[]◂ (λ _ → ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤η) ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ η →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳw ⊢σ ⟩
w [ σ ] ® erase str w T.[ σ′ ] ∷ Id A t v [ σ ] ◂ 𝟙 →⟨ proj₂ ∘→ ®∷Id⇔ .proj₁ ∘→ ®∷→®∷◂ω non-trivial ⟩
w [ σ ] ® erase str w T.[ σ′ ]
∷Id⟨ A [ σ ] ⟩⟨ t [ σ ] ⟩⟨ v [ σ ] ⟩ →⟨ (λ { (rflᵣ w[σ]⇛rfl _) → w[σ]⇛rfl }) ⟩
w [ σ ] ⇛ rfl ∷ Id A t v [ σ ] □)
of λ
w[σ]⇛rfl →
case PE.subst (_⊢_≡_∷_ _ _ _) ≡Id-wk1-wk1-0[]₀ $ ⇛→⊢≡ w[σ]⇛rfl of λ
w[σ]≡rfl →
case inversion-rfl-Id (wf-⇛ w[σ]⇛rfl .proj₂) of λ
t[σ]≡v[σ] →
case PE.subst₂ (_⊢_≡_ _) (PE.sym ([,]-[]-commute B)) (PE.sym ([,]-[]-commute B)) $
substTypeEq₂ (refl ⊢B[σ⇑⇑]) t[σ]≡v[σ] $
conv (sym′ w[σ]≡rfl) $
substTypeEq (refl (⊢∙→⊢ (wf ⊢B[σ⇑⇑]))) (sym′ t[σ]≡v[σ])
of λ
⊢B[t,rfl]≡B[v,w] →
case ∷ B [ v , w ]₁₀ [ σ ] ⟨ [,]-[]-commute B ⟩⇛≡
J p q A t B u v w [ σ ] ∷ B [ σ ⇑ ⇑ ] [ v [ σ ] , w [ σ ] ]₁₀ ⇛⟨ J-⇛ ⊢B[σ⇑⇑] ⊢u[σ] w[σ]⇛rfl ⟩∷
⟨ substTypeEq₂ (refl ⊢B[σ⇑⇑]) (sym′ t[σ]≡v[σ])
w[σ]≡rfl ⟩⇛
J p q A t B u v rfl [ σ ] ∷ B [ σ ⇑ ⇑ ] [ t [ σ ] , rfl ]₁₀ ⇒⟨ J-β-⇒ t[σ]≡v[σ] ⊢B[σ⇑⇑] ⊢u[σ] ⟩∎⇛∷
u [ σ ] ∎
of λ
J⇛u[σ] → $⟨ σ®σ′ ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ γ →⟨ subsumption-®∷[]◂ (λ _ → ≤ᶜ→⟨⟩≡𝟘→⟨⟩≡𝟘 γ≤δ) ⟩
σ ® σ′ ∷[ 𝟙ᵐ ] Γ ◂ δ →⟨ ▸⊩ʳ∷⇔ .proj₁ ⊩ʳu ⊢σ ⟩
u [ σ ] ® erase str u T.[ σ′ ] ∷ B [ t , rfl ]₁₀ [ σ ] ◂ 𝟙 →⟨ conv-®∷◂ ⊢B[t,rfl]≡B[v,w] ⟩
u [ σ ] ® erase str u T.[ σ′ ] ∷ B [ v , w ]₁₀ [ σ ] ◂ 𝟙 →⟨ ®∷◂-⇐* J⇛u[σ] T.refl ⟩
J p q A t B u v w [ σ ] ® erase str u T.[ σ′ ] ∷
B [ v , w ]₁₀ [ σ ] ◂ 𝟙 □